摘要
为探究多轴特种车制动动力学特性,优化整车制动性能,以某5轴特种车辆为研究对象,通过分析其强耦合性机械系统,利用Adams/Car平台建立了包含制动系统、悬架系统、转向系统等精细化整车动力学模型。以路试实验60 km/h初速度紧急制动工况验证了模型的可靠性,并提出利用Adams/Insight优化制动管路压力分配系数方法和制动力协调控制关系优化方法以改善整车100 km/h紧急制动的制动性能。结果表明:基于Adams/insight的优化方法使制动距离和垂向加速度有所减小,提高了车辆纵向制动安全性和垂向稳定性;制动力协调控制方法的有效性更好,相比原模型有效减小了制动距离,且增加了紧急制动工况的横向稳定性;与6S/6M制动控制方式相适应的当量三轴协调关系相比五轴协调关系,改善效果有提升,拓展了探究多轴特种车制动性优化问题的思路。
Abstract
Here, to explore braking dynamic characteristics of multi-axle special vehicle and optimize braking performance of the whole vehicle, taking a certain 5-axle special vehicle as the study object, through analyzing its strong coupling mechanical system, a refined vehicle dynamic model including braking system, suspension one and steering one was established by using Adams/Car platform.The reliability of the model was verified using road tests under the condition of emergency braking at 60 km/h initial speed.The software Adams/Insight was adopted to optimize braking pipeline pressure distribution coefficient and braking force coordinated control relationship, and improve the whole vehicle braking performance under the condition of emergency braking at 100 km/h initial speed.The results showed that the optimization method based on Adams /Insight can reduce braking distance and vertical acceleration, and improve the vehicle longitudinal braking safety and vertical stability; the effectiveness of the braking force coordinated control method is better, compared with the original model, it effectively reduces braking distance and increases lateral stability of emergency braking condition; compared with the 5-axis coordination relationship, the improving effect of the equivalent 3-axis coordination relationship corresponding to the 6S/6M braking control mode is higher to expand the idea of exploring braking performance optimization of multi-axle special vehicle.
关键词
多轴特种车 /
整车动力学建模 /
Adams/Car /
Adams/Insight优化 /
制动力协调控制
{{custom_keyword}} /
Key words
multi-axle special vehicle /
whole vehicle dynamic modeling /
Adams/Car /
Adams/Insight optimization /
braking force coordinated control
{{custom_keyword}} /
程洪杰,高蕾,刘志浩,刘庆.
多轴特种车辆动力学建模及制动性能优化研究[J]. 振动与冲击, 2021, 40(17): 241-248
CHENG Hongjie, GAO Lei, LIU Zhihao, LIU Qing.
Dynamic modeling and braking performance optimization of multi-axle special vehicle[J]. Journal of Vibration and Shock, 2021, 40(17): 241-248
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]来翔.某特种越野车行驶动力学研究[D].南京:南京理工大学,2016.
[2]刘永腾.基于ADAMS和SIMULINK的多轴电动车建模与操纵稳定性研究[D].吉林:吉林大学,2015.
[3]李韶华,杨绍普,陈立群.三向耦合非线性重型汽车建模及动力学分析[J].振动与冲击,2014,33(22):131-138.
LI Shaohua,YANG Shaopu,CHEN Liqun.Three-way coupled nonlinear heavy vehicle modeling and dynamics analysis [J].Journal of Vibration and Shock,2014,33(22):131-138.
[4]林志超.多轴分布式电驱动车辆动力学建模与状态估计研究[D].武汉:武汉理工大学,2018.
[5]SUH M W, PARK Y K, KWON S J. Braking performance simulation for a tractor-semitrailer vehicle with an air brake system[J].Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering,2002,216(1):43-54.
[6]SANTOS D P D, CABRA E.A novel method for controlling an ABS (Anti-lock Braking System) for heavy vehicle[C]∥2008 SAE Brasil Congress and Exhibit.2008.
[7]HE L,WU J L,PENG M L,et al. Modeling and co-simulation for air brake system of heavy truck[J].Advanced Materials Research,2012,466/467(2):1109-1114.
[8]何起广.基于AMESim的气压制动系统建模与优化设计[D].武汉:华中科技大学,2017.
[9]王登峰,季枫,陈书明,等.多轴重型汽车气动制动防抱死系统性能仿真与试验[J].吉林大学学报(工学版),2012,42(增刊1):7-12.
WANG Dengfeng,JI Feng,CHEN Shuming,et al.Simulation and test of performance of multi-axle heavy-duty pneumatic brake anti-lock braking system [J]. Journal of Jilin University (Engineering Edition),2012,42(Suppl.1): 7-12.
[10]周兵,李永辉,袁希文,等.滑模极值搜索算法ABS控制及对汽车侧向稳定性补偿[J].振动与冲击,2016,35(4):121-126.
ZHOU Bing,LI Yonghui,YUAN Xiwen,et al.ABS control of sliding mode extreme value search algorithm and compensation of automobile lateral stability [J].Journal of Vibration and Shock,2016,35(4):121-126.
[11]宋传学,周云山,李幼德.防抱制动系统控制算法的仿真研究[J].汽车工程,1998(1):24-30.
SONG Chuanxue,ZHOU Yunshan,LI Youde.Simulation research on control algorithm of anti-lock braking system [J].Automotive Engineering,1998 (1):24-30.
[12]沈俊,宋健.基于ADAMS和Simulink联合仿真的ABS控制算法研究[J].系统仿真学报,2017(5):1141-1143.
SHEN Jun,SONG Jian.Research on ABS control algorithm based on ADAMS and Simulink joint simulation [J].Journal of System Simulation,2017(5):1141-1143.
[13]黄宏伟.基于联合仿真的重型车辆制动性能及ABS模糊控制研究[D].石家庄:石家庄铁道大学,2013.
[14]初亮,祁富伟,王彦波,等.汽车防抱死系统电磁阀的阶梯控制[J].吉林大学学报(工学版),2014,44(4):907-911.
CHU Liang,QI Fuwei,WANG Yanbo,et al.Ladder control of solenoid valve of automobile anti-lock brake system [J].Journal of Jilin University (Engineering Edition),2014,44(4):907-911.
[15]郑宏宇,王琳琳,马申奥,等.基于载荷和滑移率的客车制动力分配控制算法[J].中国公路学报,2015,28(8):120-126.
ZHENG Hongyu,WANG Linlin,MA Shen’ao,et al.Passenger car braking force distribution control algorithm based on load and slip rate [J].Journal of China Highway,2015,28(8):120-126.
[16]郝赫.多轴重型汽车刚弹耦合虚拟样机分析与匹配[D].吉林:吉林大学,2011.
[17]齐朝晖.多体系统动力学[M].北京:科学出版社,2008.
[18]王智深,李刚炎.装有ABS的汽车气压制动系统的建模与研究[J].机床与液压,2009,37(10):93-95.
WANG Zhishen,LI Gangyan.Modeling and research of automobile air brake system with ABS [J].Machine Tool and Hydraulics,2009,37(10):93-95.
[19]张军.基于ADAMS的某型轿车悬架及转向系统参数优化[D].合肥:合肥工业大学,2017.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}