基于多传感器融合的刀具剩余寿命预测

刘思辰,杨飞然,杨军

振动与冲击 ›› 2021, Vol. 40 ›› Issue (17) : 47-54.

PDF(1775 KB)
PDF(1775 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (17) : 47-54.
论文

基于多传感器融合的刀具剩余寿命预测

  • 刘思辰1,2,杨飞然1,杨军1,2
作者信息 +

Tool residual life prediction based on multi-sensor fusion

  • LIU Sichen1,2, YANG Feiran1, YANG Jun1,2
Author information +
文章历史 +

摘要

为了提高刀具磨损状态的预测精度,提出了一种基于多传感器融合的刀具剩余寿命预测方法。在训练阶段,首先联合振动、电流、以及PLC控制器信息进行数据预处理并利用时间序列分析等方法进行特征提取。然后针对单帧样本缺乏上下文信息且无法全部覆盖整个生命周期数据的问题,采用多帧联合与mix-up方法对数据进行增强。最后设计一个深度神经网络来学习多模态输入特征与刀具剩余寿命之间的复杂非线性函数。在测试阶段,对网络输出结果进行中值滤波去除噪声影响得到最终预测值。试验结果表明,多模态数据的使用与数据增强的引入均可显著提升刀具磨损量的预测精度。

Abstract

Here, to improve the prediction accuracy of tool wear state, a tool residual life prediction method based on multi-sensor fusion was proposed.In training phase, firstly, combining vibration, current and PLC controller information, data were preprocessed, and the time series analysis method was used to do feature extraction; then, aiming at the problem of single-frame sample lacking context information and being not able to cover the whole life cycle data, multi-frame combination and the mix-up method were used to enhance data; finally, a deep neural network was designed to learn complex nonlinear functions among multi-modal input features and tool residual life.In test phase, median filtering was used to remove effects of noise and obtain the final predicted value.The experimental results showed that the effectiveness of multi-sensor fusion is verified; using multi-modal data and introducing data enhancement can significantly improve the prediction accuracy of tool wear.

关键词

剩余寿命预测 / 刀具状态监测 / 多传感器信息融合 / 数据增强 / 深度神经网络

Key words

residual life prediction / tool condition monitoring / multi-sensor information fusion / data enhancement / deep neural network

引用本文

导出引用
刘思辰,杨飞然,杨军. 基于多传感器融合的刀具剩余寿命预测[J]. 振动与冲击, 2021, 40(17): 47-54
LIU Sichen, YANG Feiran, YANG Jun. Tool residual life prediction based on multi-sensor fusion[J]. Journal of Vibration and Shock, 2021, 40(17): 47-54

参考文献

[1]AN D, KIM N H, CHOI J H.Practical options for selecting data-driven or physics-based prognostics algorithms with reviews[J].Reliability Engineering & System Safety, 2015, 133: 223-236.
[2]GAO Z, CECATI C, DING S X.A survey of fault diagnosis and fault-tolerant techniques—Part I: Fault diagnosis with model-based and signal-based approaches[J].IEEE Transactions on Industrial Electronics, 2015, 62(6): 3757-3767.
[3]关山, 彭昶.金属切削过程刀具磨损信号的混沌特征[J].振动与冲击, 2015, 34(10): 28-33.
GUAN Shan, PENG Chang.Chaotic characteristics of tool wear signal during metal cutting process[J].Journal of Vibration and Shock, 2015, 34(10): 28-33.
[4]程灿,李建勇,徐文胜,等.基于支持向量机与粒子滤波的刀具磨损状态识别[J].振动与冲击,2018,37(17):48-55.
CHENG Can, LI Jianyong, XU Wensheng, et al.Tools’ wear state recognition based on support vector machine and particle filtering[J].Journal of Vibration and Shock, 2018,37(17):48-55.
[5]KARANDIKAR J M, ABBAS A E, SCHMITZ T L.Tool life prediction using Bayesian updating.Part 1: Milling tool life model using a discrete grid method[J].Precision Engineering, 2014, 38(1): 9-17.
[6]RIZAL M, GHANI J A, NUAWI M Z, et al.Online tool wear prediction system in the turning process using an adaptive neuro-fuzzy inference system[J].Applied Soft Computing, 2013, 13(4): 1960-1968.
[7]REN L, SUN Y, CUI J, et al.Bearing remaining useful life prediction based on deep autoencoder and deep neural networks[J].Journal of Manufacturing Systems, 2018, 48: 71-77.
[8]DROUILLET C, KARANDIKAR J, NATH C, et al.Tool life predictions in milling using spindle power with the neural network technique[J].Journal of Manufacturing Processes, 2016, 22: 161-168.
[9]OLUFAYO O, ABOU-EL-HOSSEIN K.Tool life estimation based on acoustic emission monitoring in end-milling of H13 mould-steel[J].The International Journal of Advanced Manufacturing Technology, 2015, 81(1/2/3/4): 39-51.
[10]李宏波, 孙振川, 周建军, 等.一种新型 TBM 刀具磨损检测技术[J].振动与冲击, 2017, 36(24): 7-12.
LI Hongbo, SUN Zhenchuan, ZHOU Jianjun, et al.A new wear detection technique for TBM cutters[J].Journal of Vibration and Shock, 2017, 36(24): 7-12.
[11]LI X, TSO S K, WANG J.Real-time tool condition monitoring using wavelet transforms and fuzzy techniques[J].IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 2000, 30(3): 352-357.
[12]WANG C, HUANG M, CHUNG T T, et al.Tool condition monitoring with current signals for a low-power spindle[C]//2017 International Conference on Applied System Innovation (ICASI).Sapporo: IEEE, 2017.
[13]MOHANRAJ T, SHANKAR S, RAJASEKAR R, et al.Tool condition monitoring techniques in milling process—a review[J].Journal of Materials Research and Technology, 2020, 9(1):1032-1042.
[14]张锴锋.基于多传感器信息融合的刀具磨损状态监测方法研究[D].沈阳:东北大学,2016.
[15]GUO L, LI N, JIA F, et al.A recurrent neural network based health indicator for remaining useful life prediction of bearings[J].Neurocomputing, 2017, 240: 98-109.
[16]REN L, CHENG X, WANG X, et al.Multi-scale dense gate recurrent unit networks for bearing remaining useful life prediction[J].Future Generation Computer Systems, 2019, 94: 601-609.
[17]AN Q, TAO Z, XU X, et al.A data-driven model for milling tool remaining useful life prediction with convolutional and stacked LSTM network[J].Measurement, 2020, 154: 107461.
[18]LIU Y, HU X, ZHANG W.Remaining useful life prediction based on health index similarity[J].Reliability Engineering & System Safety, 2019, 185: 502-510.
[19]吴军, 苏永衡, 朱永猛, 等.基于信息融合的刀具剩余寿命在线预测方法[J].华中科技大学学报 (自然科学版), 2017,45(4): 1-5.
WU Jun, SU Yongheng, ZHU Yongmeng, et al.Real-time remaining useful life prediction of cutting tool based on information fusion[J].Journal of Huazhong University of Science & Technology(Natural Science Edition), 2017,45(4): 1-5.
[20]徐彦伟,陈立海,袁子皓,等.基于信息融合的刀具磨损状态智能识别[J].振动与冲击,2017,36(21):257-264.
XU Yanwei, CHEN Lihai, YUAN Zihao, et al.Intelligent recognition of tool wear conditions based on the information fusion[J].Journal of Vibration and Shock, 2017,36(21):257-264.
[21]李杰.工业大数据[M].北京:机械工业出版社, 2015.
[22]XU Y, DU J, DAI L R, et al.A regression approach to speech enhancement based on deep neural networks[J].IEEE/ACM Transactions on Audio Speech & Language Processing, 2015, 23(1):7-19.
[23]ZHANG H, CISSE M, DAUPHIN Y N, et al.Mixup: Beyond empirical risk minimization[J].arXiv preprint arXiv:1710.09412, 2017.
[24]SAINATH T N, VINYALS O, SENIOR A, et al.Convolutional, long short-term memory, fully connected deep neural networks[C]// Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).Queensland: IEEE, 2015.
[25]RUMELHART D E, HINTON G E, WILLIAMS R J.Learning representations by back-propagating errors[J].Nature, 1986, 323(6088):533-536.
[26]GLOROT X, BORDES A, BENGIO Y.Deep sparse rectifier neural networks[C]//Proceedings of the fourteenth international conference on artificial intelligence and statistics.Fort Lauderdale, FL: The Journal of Machine Learning Research, 2011.
[27]KINGMA D P, BA J.Adam: A method for stochastic optimization[J].arXiv preprint arXiv:1412.6980, 2014.
[28]HINTON G E, SRIVASTAVA N, KRIZHEVSKY A, et al.Improving neural networks by preventing co-adaptation of feature detectors[J].arXiv preprint arXiv:1207.0580, 2012.
[29]工业大数据产业创新平台, “赋能与赋智”第二届工业大数据创新竞赛[EB/OL].(2019-03-07) http://www.industrial-bigdata.com/datacompetition,2019.

PDF(1775 KB)

Accesses

Citation

Detail

段落导航
相关文章

/