实际应用中,鲸鱼优化算法存在精度不高、收敛速度慢等劣势,提出了一种基于非线性收敛因子、自适应权重和模拟退火策略的混合鲸鱼退火算法,平衡了算法的收敛速度和寻优能力,从而增强算法性能。构建了基于结构模态参数的识别因子,并引入稀疏约束,通过不同损伤工况下ASCE Benchmark结构模型的损伤识别数值模拟说明改进方法的有效性。结果表明:增加稀疏约束后,误判单元减少,有利于结构损伤识别,其中L0.5稀疏约束对识别精度的提升最为显著;混合鲸鱼退火算法能有效识别损伤位置及程度,其收敛精度和寻优性能有了明显提升,且在噪声环境下性能稳定,具有一定的抗噪鲁棒性。该方法可进一步应用于实际工程的损伤识别。
Abstract
In practical application, the whale optimization algorithm(WOA) has disadvantages of low accuracy and slow convergence speed.Here, a hybrid whale simulated-annealing algorithm(HWSA) based on nonlinear convergence factor, adaptive weight and simulated annealing strategy was proposed to balance convergence speed and optimization ability of the algorithm, and enhance the performance of the algorithm.Identification factors based on structural modal parameters were constructed, and sparse constraints were introduced.The effectiveness of the improved method was illustrated through damage identification numerical simulation for ASCE Benchmark structural models under different damage conditions.The results showed that misjudged elements decrease with increase in sparse constraints to be beneficial to structural damage identification, and the L0.5 sparse constraint has the most significant improvement on identification accuracy; the hybrid whale annealing algorithm can effectively identify damage location and damage level, its convergence accuracy and optimization performance are significantly improved, its performance is stable in noise environment, and it has a certain anti-noise robustness; this method can be further applied in damage identification of practical engineering.
关键词
结构损伤识别 /
混合鲸鱼退火算法(HWSA) /
非线性收敛因子 /
自适应权重 /
模拟退火 /
稀疏正则化
{{custom_keyword}} /
Key words
structural damage identification /
hybrid whale simulated-annealing algorithm(HWSA) /
nonlinear convergence factor /
adaptive weight /
simulated annealing /
sparse regularization
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]黄方林, 王学敏, 陈政清, 等.大型桥梁健康监测研究进展[J].中国铁道科学, 2005,26(2): 1-7.
HUANG Fanglin, WANG Xuemin, CHEN Zhengqing, et al.Research progress made on the health monitoring for large-type bridges [J].China Railway Science, 2005,26(2): 1-7.
[2]王延伟, 宋旭坤, 温瑞智, 等.智能优化算法在结构损伤识别中的应用[J].世界地震工程, 2011,27(4): 44-51.
WANG Yanwei, SONG Xukun, WEN Ruizhi, et al.Application of intelligent optimization algorithm to damage detection of structure [J].World Earthquake Engineering, 2011,27(4): 44-51.
[3]MIRJALILI S, LEWIS A.The whale optimization algorithm[J].Advances in Engineering Software, 2016,95: 51-67.
[4]龙文, 蔡绍洪, 焦建军, 等.求解大规模优化问题的改进鲸鱼优化算法[J].系统工程理论与实践, 2017,37(11): 2983-2994.
LONG Wen, CAI Shaohong, JIAO Jianjun, et al.Improved whale optimization algorithm for large scale optimization problems [J].System Engineering—Theory & Practice, 2017,37(11): 2983-2994.
[5]赵春华, 胡恒星, 陈保家, 等.基于深度学习特征提取和WOA-SVM状态识别的轴承故障诊断[J].振动与冲击, 2019,38(10): 31-37.
ZHAO Chunhua, HU Hengxing, CHEN Baojia, et al.Bearing fault diagnosis based on the deep learning feature extraction and WOA-SVM state recognition [J].Journal of Vibration and Shock, 2019,38(10): 31-37.
[6]白丽丽, 韩振南, 任家骏, 等.基于拉普拉斯分值和鲸鱼寻优SVM的滚动轴承故障诊断[J].太原理工大学学报, 2019,50(6): 829-834.
BAI Lili, HAN Zhennan, REN Jiajun, et al.Fault diagnosis of rolling bearing based on Laplacia score and whale optimization algorithms optimized SVM [J].Journal of Taiyuan University of Technology, 2019,50(6): 829-834.
[7]牛培峰, 吴志良, 马云鹏, 等.基于鲸鱼优化算法的汽轮机热耗率模型预测[J].化工学报, 2017,68(3): 1049-1057.
NIU Peifeng, WU Zhiliang, MA Yunpeng, et al.Prediction of steam turbine heat consumption rate based on whale optimization algorithm [J].CIESC Journal, 2017,68(3): 1049-1057.
[8]ELAZIZ M A, MIRJALILI S.A hyper-heuristic for improving the initial population of whale optimization algorithm[J].Knowledge-Based Systems, 2019,172: 42-63.
[9]KIRKPATRICK S, VECCHI M P.Optimization by simulated annealing[M].Washington, DC: American Association for the Advancement of Science, 1983.
[10]FRISWELL M I.Finite element model updating in structural dynamics[M].Berlin: Springer, 1995.
[11]TIBSHIRANI R.Regression shrinkage and selection via the Lasso[J].Journal of the Royal Statistical Society, 1996,58(1): 267-288.
[12]JOHNSON E A, LAM H F, KATAFYGIOTIS L S, et al.Phase I IASC-ASCE structural health monitoring benchmark problem using simulated data[J].Journal of Engineering Mechanics, 2004,130(1): 3-15.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}