基于等效单层理论的钢-混组合梁动力分析方法

孙琪凯,张楠,张冰,刘潇,程泽农,陶晓燕

振动与冲击 ›› 2021, Vol. 40 ›› Issue (17) : 92-98.

PDF(1572 KB)
PDF(1572 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (17) : 92-98.
论文

基于等效单层理论的钢-混组合梁动力分析方法

  • 孙琪凯1,3,张楠1,3,张冰4,刘潇1,3,程泽农1,陶晓燕2,3
作者信息 +

Dynamic analysis method of steel-concrete composite beams based on equivalent single layer theory

  • SUN Qikai1,3, ZHANG Nan1,3, ZHANG Bing4, LIU Xiao1,3, CHENG Zenong1, TAO Xiaoyan2,3
Author information +
文章历史 +

摘要

基于Reddy高阶梁理论和黏结滑移理论,提出了钢-混组合梁动力分析的等效单层理论有限元计算模型。模型中考虑了混凝土板与钢梁之间的剪切滑移和各子梁剪切变形的影响。钢-混组合梁的轴向位移沿梁高假定为三阶函数,从而可以更加准确的模拟剪切应力的抛物线变化。该计算模型的优点是预先在构建的组合梁高阶位移场中考虑了子梁间的剪力连续性和上下表面无剪应力条件,使得到的等效单层位移场函数中不包含横向位移的一阶导数,从而在有限元计算时只需要使用C0连续的插值函数。最后,通过与已发表的论文中数值结果对比,说明了该计算模型的合理性、适用范围和计算精度。结果表明:等效单层理论可适用于分析钢-混组合梁的自振特性,具有较高的计算精度;且高跨比越大,该计算模型的优势越明显。

Abstract

Here, based on Reddy’s higher-order beam theory and bond slip theory, an equivalent single-layer theoretical finite element model for dynamic analysis of steel-concrete composite beam was proposed considering effects of shear slip between concrete slab and steel beam and shear deformation of each sub-beam.Axial displacement of steel-concrete composite beam was assumed to be a third-order function along beam height so as to more accurately simulate parabolic curve change of shear stress.The advantage of this calculation model was considering in advance the shear continuity between sub-beams and the condition of no shear stress on beam’s upper and lower surfaces in the constructed high-order displacement field of steel-concrete composite beam to make the equivalent single-layer displacement field function exclude the first-order derivative of beam transverse displacement, thus only C0 continuous interpolation function was needed in finite element calculation.Finally, by comparing with the numerical results in published papers, the rationality, applicable range and calculation accuracy of the proposed model were illustrated.The results showed that the equivalent single-layer theory can be used to analyze natural vibration characteristics of steel-concrete composite beam with higher calculation accuracy; the larger the ratio of height to span, the more obvious the advantage of the model.

关键词

钢-混组合梁 / 等效单层理论 / C0连续插值函数 / 相对滑移 / 动力分析

Key words

steel-concrete composite beam / equivalent single-layer theory / C0 continuous interpolation function / relative slip / dynamic analysis

引用本文

导出引用
孙琪凯,张楠,张冰,刘潇,程泽农,陶晓燕. 基于等效单层理论的钢-混组合梁动力分析方法[J]. 振动与冲击, 2021, 40(17): 92-98
SUN Qikai, ZHANG Nan, ZHANG Bing, LIU Xiao, CHENG Zenong, TAO Xiaoyan. Dynamic analysis method of steel-concrete composite beams based on equivalent single layer theory[J]. Journal of Vibration and Shock, 2021, 40(17): 92-98

参考文献

[1]聂建国,余志武.钢-混凝土组合梁在我国的研究及应用[J].土木工程学报,1999,32(2):3-8.
NIE Jianguo, YU Zhiwu.Research and practice of composite steel-concrete beams in China[J].China Civil Engineering Journal, 1999, 32(2): 3-8.
[2]朱力,聂建国,季文玉.钢-混凝土组合箱型梁的滑移和剪力滞效应[J].工程力学,2016, 33(9): 49-68.
ZHU Li, NIE Jianguo, JI Wenyu.Slip and shear-lag effects of steel-concrete composite box beam [J].Engineering Mechanics, 2016, 33(9): 49-68.
[3]NEWMARK N M, SIESS C P, VIEST I M.Test and analysis of composite beams with incomplete interaction[J].Proceedings of the Society for Experimental Stress Analysis, 1951, 9(1): 75-92.
[4]GIRHAMMAR U A, PAN D H.Dynamic analysis of composite members with interlayer slip[J].International Journal of Solids and Structures, 1993, 30(6): 797-823.
[5]GIRHAMMAR U A, PAN D H, GUSTAFSSON A.Exact dynamic analysis of composite beams with partial interaction[J].International Journal of Mechanical Sciences, 2009, 51(8): 565-582.
[6]HUANG C W, SU Y H.Dynamic characteristics of partial composite beams[J].International Journal of Structural Stability and Dynamics, 2008, 8(4): 665-685.
[7]侯忠明,夏禾,王元清,等.钢-混凝土组合梁动力折减系数研究[J].振动与冲击,2015,34(4):74-81.
HOU Zhongming, XIA He, WANG Yuanqing, et al.Dynamic redution coefficients for a steel-concrete composite beam[J].Journal of Vibration and Shock, 2015, 34(4): 74-81.
[8]杨骁,李晓伟,汪德江.界面掀起和轴力对组合梁动力弯曲特性的影响[J].振动与冲击,2016,35(8):124-137.
YANG Xiao, LI Xiaowei, WANG Dejiang.Influences of the interfacial uplift and axial load on dynamic bending characteristics of composite beams[J].Journal of Vibration and Shock, 2016, 35(8): 124-137.
[9]XU R, WU Y.Static dynamic and buckling analysis of partial interaction composite members using Timoshenko’s beam theory[J].International Journal of Mechanical Sciences, 2007, 49(10): 1139-1155.
[10]XU R, WANG G.Variational principle of partial-interaction composite beams using Timoshenko’s beam theory[J].International Journal of Mechanical Sciences, 2012, 60(1): 72-83.
[11]NGUYEN Q H, HJIAJ M, GROGNEC P L.Analytical approach for free vibration analysis of two-layer Timoshenko beams with interlayer slip[J].Journal of Sound and Vibration, 2012, 331(12): 2949-2961.
[12]SCHNABL S, SAJE M, TURK G, Planinc I.Locking-free two-layer Timoshenko beam element with interlayer slip[J].Finite Elements in Analysis and Design, 2007, 43(9): 705-714.
[13]李晓伟,何光辉.Timoshenko组合梁动力特性与瞬态响应的求积元分析[J].振动与冲击,2018,37(18):257-265.
LI Xiaowei, HE Guanghui.Quadrature element analysis on dynamic characteristics and transient responses of Timoshenko composite beams[J].Journal of Vibration and Shock, 2018, 37(18): 257-265.
[14]REDDY J N.A simple higher-order theory for laminated composite plates[J].Journal of Applied Mechanics, 1984, 51(1984): 745-752.
[15]KANT T, OWEN D R J, ZIENKIEWICZ O C.A refined higher-order C0 plate bending element[J].Computers and Structures, 1982, 15(2): 177-183.
[16]KANT T, GUPTA A.A finite element model for a higher-order shear-deformable beam theory[J].Journal of Sound and Vibration, 1988, 125(2): 193-202.
[17]HE G H, YANG X.Dynamic analysis of two-layer composite beams with partial interaction using a higher order beam theory[J].International Journal of Mechanical Sciences, 2015, 90: 102-112.
[18]HE G H, WANG D J, YANG X.Analytical solutions for free vibration and buckling of composite beams using a higher order beam theory[J].Acta Mechanica Solida Sinica, 2016, 29(3): 300-315.
[19]FU C, YANG X.Dynamic analysis of partial-interaction Kant composite beams by weak-form quadrature element method[J].Archive of Applied Mechanics, 2018, 88(1): 2179-2198.
[20]CHAKRABARTI A, SHEIKH A H, GRIFFITH M, et al.Analysis of composite beams with partial shear interactions using a higher order beam theory[J].Engineering Structures, 2012, 36: 283-291.
[21]CHAKRABARTI A, SHEIKH A H, GRIFFITH M, et al.Dynamic response of composite beams with partial shear interaction using a higher-order beam theory[J].Journal of Structural Engineering, 2013, 139(1): 47-56.
[22]周旺保,蒋丽忠,余志武,等.考虑剪力滞和滑移效应的钢-混凝土连续组合箱梁自振特性[J].中国公路学报,2013,26(5):88-94.
ZHOU Wangbao, JIANG Lizhong, YU Zhiwu, et al.Free vibration characteristics of steel-concrete composite continuous box girder considering shear lag and slip[J].China Journal of Highway and Transport, 2013, 26(5): 88-94.
[23]陈玉骥,罗旗帜.钢-混凝土组合梁考虑剪力滞和滑移的一阶自振频率[J].烟台大学学报(自然科学与工程版),2015,28(1):49-69.
CHEN Yuji, LUO Qizhi.First order natural vibration frequency for steel-concrete composite beams considering influence of shear lags and slips[J].Journal of Yantai University (Natural Science and Engineering Edition), 2015, 28(1): 49-69.
[24]苏庆田,薛智波,李晨翔,等.组合梁钢与混凝土界面连接效应的精细化计算[J].同济大学学报(自然科学版),2016,44(12):1803-1809.
SU Qingtian, XUE Zhibo, LI Chenxiang, et al.Refined calculation of steel-concrete interface connection in composite girders[J].Journal of Tongji University (Natural Science), 2016,44(12):1803-1809.
[25]ATAEI A, ZEYNALIAN M, YAZDI Y.Cyclic behaviour of bolted shear connectors in steel-concrete composite beams[J].Journal of Constructional Steel Research,2019,161:328-340.
[26]ZHAO Y, ZHOU X H, YANG Y L, et al.Shear behavior of a novel cold-formed U-shaped steel and concrete composite beam[J].Engineering Structures, 2019, 200: 109745.[27]WANG Y H, YU J, LIU J P, et al.Experimental study on assembled monolithic steel-prestressed concrete composite beam in negative moment [J].Engineering Structures,2019,180:494-509.
[28]BATHE K J.Finite element procedures[M].Englewood Cliffs, NJ: Prentice Hall, 1996.

PDF(1572 KB)

Accesses

Citation

Detail

段落导航
相关文章

/