[1]IDE S, YABE S, TANAKA Y.Earthquake potential revealed by tidal influence on earthquake size-frequency statistics[J].Nature Geoscience, 2016,9(11): 834-837.
[2]CHESTLER S R, CREAGER K C.Evidence for a scale-limited low-frequency earthquake source process[J].Journal of Geophysical Research: Solid Earth, 2017,122(4): 3099-3114.
[3]DEY T, RAMACHANDRA L S.Non-linear vibration analysis of laminated composite circular cylindrical shells[J].Composite Structures, 2017,163: 89-100.
[4]庞福振, 田宏业, 李海超, 等.基于半解析法的圆柱壳结构自由振动特性分析[J].振动与冲击, 2019,38(22): 21-28.
PANG Fuzhen, TIAN Hongye, LI Haichao, et al.Semi-analytical method for the free vibration characteristics analysis of cylindrical shells[J].Journal of Vibration and Shock, 2019,38(22): 21-28.
[5]DONNELL L H.Stability of thin-walled tubes under torsion[R].Pasadena: California Institute of Technology, 1933.
[6]FLUEGGE S.Stresses in shells[M].Berlin: Springer, 1973.
[7]LOVE A E H.A treatise on the mathematical theory of elasticity[M].Cambridge: Cambridge University Press, 2013.
[8]SANDERS J L, Jr.An improved first-approximation theory for thin shells: NASA-TR-R24[R].Washington, D.C.: NASA, 1959.
[9]CONFALONIERI F, GHISI A, PEREGO U.8-Node solid-shell elements selective mass scaling for explicit dynamic analysis of layered thin-walled structures[J].Computational Mechanics, 2015,56(4): 585-599.
[10]曹志远.板壳振动理论[M].北京: 中国铁道出版社,1989.
[11]黄克智.弹性薄壳理论[M].北京: 科学出版社, 1988.
[12]LEE J.Identification of multiple cracks in a beam using natural frequencies[J].Journal of Sound and Vibration, 2009,320(3): 482-490.
[13]WANG Y L, JU Y, ZHUANG Z, et al.Adaptive finite element analysis for damage detection of non-uniform Euler-Bernoulli beams with multiple cracks based on natural frequencies[J].Engineering Computation, 2017,35(3): 1203-1229.
[14]GERASIMOV T, STEIN E, WRIGGERS P.Constant-free explicit error estimator with sharp upper error bound property for adaptive FE analysis in elasticity and fracture[J].International Journal for Numerical Methods in Engineering, 2015,101(2): 79-126.
[15]ZIENKIEWICZ O C.The background of error estimation and adaptivity in finite element computations[J].Computer Methods in Applied Mechanics and Engineering, 2006,195(4/5/6): 207-213.
[16]袁驷, 王永亮, 徐俊杰.二维自由振动的有限元线法自适应分析新进展[J].工程力学, 2014,31(1): 15-22.
YUAN Si, WANG Yongliang, XU Junjie.New progress in self-adaptive FEMOL analysis of 2D free vibration problems[J].Engineering Mechanics, 2014,31(1): 15-22.
[17]BESPALOV A, HABERL A, PRAETORIUS D.Adaptive FEM with coarse initial mesh guarantees optimal convergence rates for compactly perturbed elliptic problems[J].Computer Methods in Applied Mechanics and Engineering, 2017,317: 318-340.
[18]ARTHURS C J, BISHOP M J, KAY D.Efficient simulation of cardiac electrical propagation using high-order finite elements II: adaptive p-version[J].Journal of Computational Physics, 2013,253: 443-470.
[19]WANG Y L, JU Y, CHEN J L, et al.Adaptive finite element-discrete element analysis for the multistage supercritical CO2 fracturing of horizontal wells in tight reservoirs considering pre-existing fractures and thermal-hydro-mechanical coupling[J].Journal of Natural Gas Science and Engineering, 2019,61: 251-269.
[20]GOMEZ-REVUELTO I, GARCIA-CASTILLO L E, LLORENTE-ROMANO S, et al.A three-dimensional self-adaptive hp finite element method for the characterization of waveguide discontinuities[J].Computer Methods in Applied Mechanics and Engineering, 2012,249: 62-74.
[21]ARNDT M, MACHADO R D, SCREMIN A.An adaptive generalized finite element method applied to free vibration analysis of straight bars and trusses[J].Journal of Sound and Vibration, 2010,329(6): 659-672.
[22]ARNDT M, MACHADO R D, SCREMIN A.Accurate assessment of natural frequencies for uniform and non-uniform Euler-Bernoulli beams and frames by adaptive generalized finite element method[J].Engineering Computations, 2016,33(5): 1586-1609.
[23]STEIN E, SEIFERT B, OHNIMUS S, et al.Adaptive finite element analysis of geometrically non-linear plates andshells, especially buckling[J].International Journal for Numerical Methods in Engineering, 1994,37(15): 2631-2655.
[24]黄会荣, 黄义.考虑横向剪切变形厚旋转壳振动的位移型基本方程[J].空间结构, 2003,10(1): 3-7.
HUANG Huirong, HUANG Yi.Displacemental vibration equations of thick shells of revolution considering transverse shear deformation[J].Spatial Stractures, 2003,10(1): 3-7.
[25]CLOUGH R W, PENZIEN J.Dynamics of structures[M].2nd ed.New York: McGraw-Hill, 1993.
[26]WIBERG N E, BAUSYS R, HAGER P.Adaptive h-version eigenfrequency analysis[J].Computers and Structures, 1999,71(5): 565-584.
[27]WIBERG N E, BAUSYS R, HAGER P.Improved eigenfrequencies and eigenmodes in free vibration analysis[J].Computers and Structures, 1999,73(1/2/3/4/5): 79-89.
[28]ZIENKIEWICZ O C, ZHU J.The superconvergent patch recovery and a posteriori error estimates.Part 2: error estimates and adaptivity[J].International Journal for Numerical Methods in Engineering, 1992,33(7): 1365-1382.
[29]SIVADAS K R, GANESAN N.Free vibration and material damping analysis of moderately thick circular cylindrical shells[J].Journal of Sound and Vibration, 1994,172(1): 47-61.
[30]陈旭东, 叶康生.中厚圆柱壳自由振动的动力刚度法分析[J].工程力学, 2016,33(9): 40-48.
CHEN Xudong, YE Kangsheng.Analysis of free vibration of moderately thick circular cylindrical shells using the dynamic stiffness method[J].Engineering Mechanics, 2016,33(9): 40-48.
[31]陈旭东.旋转壳自由振动的动力刚度法研究[D].北京:清华大学, 2009.
[32]LEISSA A W.Vibration of shells[R].Washington, D.C.: NASA, 1973.
[33]ARMENAKAS A E, GAZIS D S, HERRMANN G.Free vibrations of circular cylindrical shells[M].Oxford: Pergamon Press, 1969.
[34]LOY C T, LAM K Y.Vibration of thick cylindrical shells on the basis of three-dimensional theory of elasticity[J].Journal of Sound and Vibration, 1999,226(4): 719-737.