中厚圆柱壳振型的有限元超收敛拼片恢复解和网格自适应分析

王永亮

振动与冲击 ›› 2021, Vol. 40 ›› Issue (18) : 112-118.

PDF(1362 KB)
PDF(1362 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (18) : 112-118.
论文

中厚圆柱壳振型的有限元超收敛拼片恢复解和网格自适应分析

  • 王永亮1,2
作者信息 +

Superconvergent patch recovery solutions and adaptive mesh refinement analysis of finite element method for vibration modes of moderately thick circular cylindrical shells

  • WANG Yongliang1,2
Author information +
文章历史 +

摘要

该研究提出中厚圆柱壳振型的有限元(FE)位移超收敛拼片恢复方法,建立各阶振型的超收敛解,并基于振型超收敛解进行中厚圆柱壳自由振动的网格自适应分析。在给定有限元网格下,先应用常规有限元法(FEM)得到该网格下中厚圆柱壳频率和振型的有限元解,再引入超收敛拼片恢复方法和高阶形函数插值技术获得振型(位移)的超收敛解、通过计算Rayleigh 商获得频率的超收敛解,随后利用振型超收敛解估计有限元解在能量模形式下的误差,根据误差进行网格细分加密并生成新网格,重复该过程,直到获得优化的网格和满足预设误差限的高精度解答。数值算例表明,该算法适于求解多类边界条件、环向波数和厚长比的中厚圆柱壳连续阶频率和振型,求解过程可靠有效、解答精确。

Abstract

A superconvergent patch recovery method was presented for superconvergent solutions of the vibration mode of each order in the finite element (FE) post-processing stage of moderately thick circular cylindrical shells, and the adaptive mesh refinement analysis for free vibration based on the superconvergent solution was implemented.On a given finite element mesh, the FE solutions of frequency and mode of the moderately thick circular cylindrical shell were obtained by the conventional finite element method (FEM).Then the superconvergent patch recovery displacement method and high-order shape function interpolation technique were introduced to obtain the superconvergent solution of mode (displacement), while the superconvergent solution of frequency was obtained by Rayleigh quotient computation.Finally, the superconvergent solution of mode was used to estimate the errors of FE solutions in energy norm, furthermore, the mesh was subdivided to generate a new mesh in accordance with the errors.The above procedure was repeated until the optimized mesh was derived and the accuracy of FE solutions met the preset error tolerance.The numerical examples show that the proposed algorithm is suitable for solving the continuous orders of frequencies and modes under different kinds of boundary conditions, different circumferential wave number and different thickness to length ratio of moderately thick circular cylindrical shells.The computation procedure is reliable and effective and can provide accurate solutions.

关键词

中厚圆柱壳 / 自由振动 / 振型 / 位移超收敛拼片恢复 / 网格自适应划分 / 有限元法(FEM)

Key words

moderately thick circular cylindrical shell / free vibration / vibration mode / superconvergent patch recovery / adaptive mesh refinement / finite element method(FEM)

引用本文

导出引用
王永亮. 中厚圆柱壳振型的有限元超收敛拼片恢复解和网格自适应分析[J]. 振动与冲击, 2021, 40(18): 112-118
WANG Yongliang. Superconvergent patch recovery solutions and adaptive mesh refinement analysis of finite element method for vibration modes of moderately thick circular cylindrical shells[J]. Journal of Vibration and Shock, 2021, 40(18): 112-118

参考文献

[1]IDE S, YABE S, TANAKA Y.Earthquake potential revealed by tidal influence on earthquake size-frequency statistics[J].Nature Geoscience, 2016,9(11): 834-837.
[2]CHESTLER S R, CREAGER K C.Evidence for a scale-limited low-frequency earthquake source process[J].Journal of Geophysical Research: Solid Earth, 2017,122(4): 3099-3114.
[3]DEY T, RAMACHANDRA L S.Non-linear vibration analysis of laminated composite circular cylindrical shells[J].Composite Structures, 2017,163: 89-100.
[4]庞福振, 田宏业, 李海超, 等.基于半解析法的圆柱壳结构自由振动特性分析[J].振动与冲击, 2019,38(22): 21-28.
PANG Fuzhen, TIAN Hongye, LI Haichao, et al.Semi-analytical method for the free vibration characteristics analysis of cylindrical shells[J].Journal of Vibration and Shock, 2019,38(22): 21-28.
[5]DONNELL L H.Stability of thin-walled tubes under torsion[R].Pasadena: California Institute of Technology, 1933.
[6]FLUEGGE S.Stresses in shells[M].Berlin: Springer, 1973.
[7]LOVE A E H.A treatise on the mathematical theory of elasticity[M].Cambridge: Cambridge University Press, 2013.
[8]SANDERS J L, Jr.An improved first-approximation theory for thin shells: NASA-TR-R24[R].Washington, D.C.: NASA, 1959.
[9]CONFALONIERI F, GHISI A, PEREGO U.8-Node solid-shell elements selective mass scaling for explicit dynamic analysis of layered thin-walled structures[J].Computational Mechanics, 2015,56(4): 585-599.
[10]曹志远.板壳振动理论[M].北京: 中国铁道出版社,1989.
[11]黄克智.弹性薄壳理论[M].北京: 科学出版社, 1988.
[12]LEE J.Identification of multiple cracks in a beam using natural frequencies[J].Journal of Sound and Vibration, 2009,320(3): 482-490.
[13]WANG Y L, JU Y, ZHUANG Z, et al.Adaptive finite element analysis for damage detection of non-uniform Euler-Bernoulli beams with multiple cracks based on natural frequencies[J].Engineering Computation, 2017,35(3): 1203-1229.
[14]GERASIMOV T, STEIN E, WRIGGERS P.Constant-free explicit error estimator with sharp upper error bound property for adaptive FE analysis in elasticity and fracture[J].International Journal for Numerical Methods in Engineering, 2015,101(2): 79-126.
[15]ZIENKIEWICZ O C.The background of error estimation and adaptivity in finite element computations[J].Computer Methods in Applied Mechanics and Engineering, 2006,195(4/5/6): 207-213.
[16]袁驷, 王永亮, 徐俊杰.二维自由振动的有限元线法自适应分析新进展[J].工程力学, 2014,31(1): 15-22.
YUAN Si, WANG Yongliang, XU Junjie.New progress in self-adaptive FEMOL analysis of 2D free vibration problems[J].Engineering Mechanics, 2014,31(1): 15-22.
[17]BESPALOV A, HABERL A, PRAETORIUS D.Adaptive FEM with coarse initial mesh guarantees optimal convergence rates for compactly perturbed elliptic problems[J].Computer Methods in Applied Mechanics and Engineering, 2017,317: 318-340.
[18]ARTHURS C J, BISHOP M J, KAY D.Efficient simulation of cardiac electrical propagation using high-order finite elements II: adaptive p-version[J].Journal of Computational Physics, 2013,253: 443-470.
[19]WANG Y L, JU Y, CHEN J L, et al.Adaptive finite element-discrete element analysis for the multistage supercritical CO2 fracturing of horizontal wells in tight reservoirs considering pre-existing fractures and thermal-hydro-mechanical coupling[J].Journal of Natural Gas Science and Engineering, 2019,61: 251-269.
[20]GOMEZ-REVUELTO I, GARCIA-CASTILLO L E, LLORENTE-ROMANO S, et al.A three-dimensional self-adaptive hp finite element method for the characterization of waveguide discontinuities[J].Computer Methods in Applied Mechanics and Engineering, 2012,249: 62-74.
[21]ARNDT M, MACHADO R D, SCREMIN A.An adaptive generalized finite element method applied to free vibration analysis of straight bars and trusses[J].Journal of Sound and Vibration, 2010,329(6): 659-672.
[22]ARNDT M, MACHADO R D, SCREMIN A.Accurate assessment of natural frequencies for uniform and non-uniform Euler-Bernoulli beams and frames by adaptive generalized finite element method[J].Engineering Computations, 2016,33(5): 1586-1609.
[23]STEIN E, SEIFERT B, OHNIMUS S, et al.Adaptive finite element analysis of geometrically non-linear plates andshells, especially buckling[J].International Journal for Numerical Methods in Engineering, 1994,37(15): 2631-2655.
[24]黄会荣, 黄义.考虑横向剪切变形厚旋转壳振动的位移型基本方程[J].空间结构, 2003,10(1): 3-7.
HUANG Huirong, HUANG Yi.Displacemental vibration equations of thick shells of revolution considering transverse shear deformation[J].Spatial Stractures, 2003,10(1): 3-7.
[25]CLOUGH R W, PENZIEN J.Dynamics of structures[M].2nd ed.New York: McGraw-Hill, 1993.
[26]WIBERG N E, BAUSYS R, HAGER P.Adaptive h-version eigenfrequency analysis[J].Computers and Structures, 1999,71(5): 565-584.
[27]WIBERG N E, BAUSYS R, HAGER P.Improved eigenfrequencies and eigenmodes in free vibration analysis[J].Computers and Structures, 1999,73(1/2/3/4/5): 79-89.
[28]ZIENKIEWICZ O C, ZHU J.The superconvergent patch recovery and a posteriori error estimates.Part 2: error estimates and adaptivity[J].International Journal for Numerical Methods in Engineering, 1992,33(7): 1365-1382.
[29]SIVADAS K R, GANESAN N.Free vibration and material damping analysis of moderately thick circular cylindrical shells[J].Journal of Sound and Vibration, 1994,172(1): 47-61.
[30]陈旭东, 叶康生.中厚圆柱壳自由振动的动力刚度法分析[J].工程力学, 2016,33(9): 40-48.
CHEN Xudong, YE Kangsheng.Analysis of free vibration of moderately thick circular cylindrical shells using the dynamic stiffness method[J].Engineering Mechanics, 2016,33(9): 40-48.
[31]陈旭东.旋转壳自由振动的动力刚度法研究[D].北京:清华大学, 2009.
[32]LEISSA A W.Vibration of shells[R].Washington, D.C.: NASA, 1973.
[33]ARMENAKAS A E, GAZIS D S, HERRMANN G.Free vibrations of circular cylindrical shells[M].Oxford: Pergamon Press, 1969.
[34]LOY C T, LAM K Y.Vibration of thick cylindrical shells on the basis of three-dimensional theory of elasticity[J].Journal of Sound and Vibration, 1999,226(4): 719-737.

PDF(1362 KB)

2686

Accesses

0

Citation

Detail

段落导航
相关文章

/