[1]周宏伟,王春萍,段志强,等.基于分数阶导数的盐岩流变本构模型[J].中国科学(物理学 力学 天文学),2012,42(3): 310-318.
ZHOU Hongwei, WANG Chunping, DUAN Zhiqiang, et al.Time-based fractional derivative approach to creep constitutive model of salt rock[J].Scientia Sinica Physica, Mechanica & Astronomica, 2012,42(3): 310-318.
[2]SOON C M, COIMBRA C F M, KOBAYASHI M H.The variable viscoelasticity oscillator[J].Annalen der Physik, 2005,14(6): 378-389.
[3]INGMAN D, SUZDALNITSKY J.Control of damping oscillations by fractional differential operator with time-dependent order[J].Computer Methods in Applied Mechanics and Engineering, 2004,193(52): 5585-5595.
[4]叶宇旻,周林根,谢兴博.变分数阶振子振动控制方法研究[J].振动与冲击,2015,34(16): 119-121.
YE Yumin, ZHOU Lingen, XIE Xingbo.Active vibration control method for variable order oscillator[J].Journal of Vibration and Shock, 2015,34(16): 119-121.
[5]JIA Y T, XU M Q, LIN Y Z.A new algorithm for nonlinear fractional BVPs[J].Applied Mathematics Letters, 2016,57: 121-125.
[6]MATTEO A D, PIRROTTA A.Generalized-differential transform method for nonlinear boundary value problem of fractional order[J].Communications in Nonlinear Science and Numerical Simulation, 2015,29(1/2/3): 88-101.
[7]ATE 瘙 塁 L, ZEGELING P A.A homotopy pertur-bation method for fractional-order advection-diffusion-reaction boundary-value problems[J].Applied Mathe-matical Modelling, 2017,47: 425-441.
[8]SHAH K.Using a numerical method by omitting discretization of data to study numerical solutions for boundary value problems of fractional order differential equations[J].Mathematical Methods in the Applied Sciences, 2019,48(18): 6944-6959.
[9]HESAMEDDINI E, SHAHBAZI M.Solving multipoint problems with linear Volterra-Fredholm integro-differential equations of the neutral type using Bernstein polynomials method[J].Applied Numerical Mathematics, 2019,136: 122-138.
[10]DOHA E H, BHRAWY A H, EZZ-ELDIEN S S.A Chebyshev spectral method based on opera-tional matrix for initial and boundary value problems of fractional order[J].Computers and Mathematics with Applications, 2011,62(5): 2364-2373.
[11]JAVADI S H, BABOLIAN E, TAHERI Z.Solving generalized pantograph equations by shifted orthonormal Bernstein polynomials[J].Journal of Computational and Applied Mathe-matics, 2016,303: 1-14.
[12]BEHIRY S H.Solution of nonlinear Fredholm integro differential equations using a hybird of block pulse functions and normalized Bernstein polynomials[J].Journal of Computational and Applied Mathematics, 2014,260: 258-265.
[13]HASSANI H, AVAZZADEH Z.Transcen-dental Bernstein series for solving nonlinear variable order fractional optimal control problems[J].Applied Mathematics and Computation, 2019,362: 1236-1245.
[14]HASSANI H, TENREIRO MACHADO J A, AVAZZADEH Z.An effective numerical method for solving nonlinear variable-order fractional functional boundary value problems through optimization technique[J].Nonlinear Dynamics, 2019,97(4): 2041-2054.
[15]NEMATI A, YOUSEFI S, SOLTANIAN F, et al.An efficient numerical solution of fractional optimal control problems by using the Ritz method and Bernstein operational matrix[J].Asian Journal of Control, 2016,18(6): 2272-2282.
[16]KREYSZIG E.Introductory functional analysis with appli-cations[M].London: Wiley, 1978.
[17]FENG X L, MEI L Q, HE G L.An efficient algorithm for solving Troesch’s problem[J].Applied Mathematics and Computation, 2007,189(1): 500-507.
[18]DEEBA E, KHURI S A, XIE S.An algorithm for solving boundary value problems[J].Journal of Computation and Physics, 2000,159(2): 125-138.