基于多复域的频响函数灵敏度分析

田宇,曹芝腑,姜东

振动与冲击 ›› 2021, Vol. 40 ›› Issue (18) : 156-163.

PDF(2054 KB)
PDF(2054 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (18) : 156-163.
论文

基于多复域的频响函数灵敏度分析

  • 田宇1,曹芝腑2,姜东1,2
作者信息 +

Sensitivity analysis of frequency response functions based on multicomplex domain

  • TIAN Yu1,CAO Zhifu2,JIANG Dong1,2
Author information +
文章历史 +

摘要

频响函数灵敏度分析被广泛应用于结构模型修正、损伤识别及振动控制等领域。考虑结构频率响应中已存在虚部,该研究提出了一种基于多复域的频响函数灵敏度分析方法。首先,构造设计参数所在的复域,并在该复域上对设计参数进行虚部摄动。然后,将多复域上的运动控制方程与灵敏度分析方程扩展为实数矩阵表达,实现频率响应与设计参数所在复域的解耦,从而同步求解结构的频响函数及对应的灵敏度。最后,以多自由度弹簧质量系统与GARTEUR桁架结构为研究对象进行数值仿真分析,验证多复域频响函数灵敏度分析方法的正确性。结果表明,相较于传统的实数域有限差分法,多复域方法具有更高的分析精度,且所提方法对参数摄动量减小引起的误差不敏感,该方法能够为复杂结构的频响函数灵敏度分析提供更加准确的结果。

Abstract

Sensitivity analysis of frequency response functions (FRFs) is widely used in structural model updating, damage identification and vibration control.Based on the traditional original complex domain for structural frequency response analysis, a multi-complex domain-based sensitivity analysis method of FRFs was proposed.Firstly, a second complex domain for design parameter perturbation was constructed.Then, the equations of motion and sensitivity analysis in the multicomplex domain were extended and expressed by  real-matrix formulas, the FRFs and corresponding sensitivities were calculated simultaneously.Finally, a multi-freedom spring-mass system and a GARTEUR truss were taken as examples to verify the accuracy of the proposed method.The results show that the proposed multi-complex domain sensitivity analysis method is more accurate than the classical finite difference method.The proposed method is insensitive to the perturbation size of the design parameter.The method provides more accurate results for the FRFs sensitivity analysis of complex structures.

关键词

多复域 / 频响函数(FRF) / 灵敏度分析 / 矩阵扩维 / 复变量求导法

Key words

multicomplex domain / frequency response function(FRF) / sensitivity analysis / matrix expansion;complex-variable-differentiation method

引用本文

导出引用
田宇,曹芝腑,姜东. 基于多复域的频响函数灵敏度分析[J]. 振动与冲击, 2021, 40(18): 156-163
TIAN Yu,CAO Zhifu,JIANG Dong. Sensitivity analysis of frequency response functions based on multicomplex domain[J]. Journal of Vibration and Shock, 2021, 40(18): 156-163

参考文献

[1]李园园, 陈国平, 王轲.直升机旋翼/机身动力反共振隔振器的优化设计[J].振动与冲击, 2016, 35(15): 115-121.
LI Yuanyuan, CHEN Guoping, WANG Ke.Optimization design for dynamic anti-resonance isolators of helicopters’ rotor/fuselage[J].Journal of Vibration and Shock, 2016, 35(15): 115-121.
[2]姜东, 费庆国, 吴邵庆.基于区间分析的不确定性结构动力学模型修正方法[J].振动工程学报, 2015, 28(3): 352-358.
JIANG Dong, FEI Qingguo, WU Shaoqing.Updating of structural dynamics model with uncertainty based on interval analysis[J].Journal of Vibration Engineering, 2015, 28(3): 352-358.
[3]曹芝腑, 姜东, 吴邵庆, 等.混合边界子结构的航空发动机机匣模型修正[J].航空动力学报, 2017, 32(11): 2695-2704.
CAO Zhifu, JIANG Dong, WU Shaoqing, et al.Model updating of an aero-engine casing based on the mixed boundary substructure[J].Journal of Aerospace Power, 2017, 32(11): 2695-2704.
[4]展铭, 郭勤涛, 岳林, 等.使用应变模态和遗传算法的有限元模型修正方法[J].振动、测试与诊断, 2018, 38(5): 974-978.
ZHAN Ming, GUO Qintao, YUE Lin, et al.Finite element model updating using strain mode and genetic algorithm-based method[J].Journal of Vibration, Measurement & Diagnosis, 2018, 38(5): 974-978.
[5]费庆国, 姜东, 陈素芳, 等.高温下编织复合材料热相关参数识别方法研究[J].力学学报, 2018, 50(3): 497-507.
FEI Qingguo, JIANG Dong, CHEN Sufang, et al.Thermal-related parameter identification of braided composites at high temperature [J].Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(3): 497-507.
[6]姜东, 吴邵庆, 史勤丰, 等.基于薄层单元的螺栓连接结构接触面不确定性参数识别[J].工程力学, 2015, 32(4): 220-227.
JIANG Dong, WU Shaoqing, SHI Qinfeng, et al.Contact interface parameter identification of bolted joint structure with uncertainty using thin layer element method[J].Engineering Mechanics, 2015, 32(4): 220-227.
[7]姜东, 吴邵庆, 费庆国, 等.蜂窝夹层复合材料不确定性参数识别方法[J].振动与冲击, 2015, 34(2): 14-19.
JIANG Dong, WU Shaoqing, FEI Qingguo, et al.Parameter identification approach of honeycomb sandwich composite with uncertainties[J].Journal of Vibration and Shock, 2015, 34(2): 14-19.
[8]陈学前, 沈展鹏, 刘信恩.基于响应面与灵敏度分析的区间不确定性参数识别方法[J].振动与冲击, 2019, 38(16): 267-273.
CHEN Xueqian, SHEN Zhanpeng, LIU Xin’en.A method of interval uncertain parameter identification based on a response surface model and sensitivity analysis [J].Journal of Vibration and Shock, 2019, 38(16): 267-273.
[9]JIANG D, LI Y B, FEI Q G, et al.Prediction of uncertain elastic parameters of a braided composite[J].Composite Structures, 2015, 126: 123-131.
[10]JIANG D, ZHANG D H, FEI Q G, et al.An approach on identification of equivalent properties of honeycomb core using experimental modal data[J].Finite Elements in Analysis & Design, 2014, 90(6): 84-92.
[11]LIN R M.Function-weighted frequency response function sensitivity method for analytical model updating[J].Journal of Sound & Vibration, 2017, 403: 59-74.
[12]ZHU R, FEI Q G, JIANG D, et al.Dynamic sensitivity analysis based on Sherman-Morrison-Woodbury formula[J].AIAA Journal, 2019, 57(11): 4992-5001.
[13]黄修长, 苏智伟, 倪臻, 等.基于频响函数综合的推进轴系动力学建模与支撑结构参数优化分析[J].振动与冲击, 2019, 38(4): 33-39.
HUANG Xiuchang, SU Zhiwei, NI Zhen, et al.Dynamic modeling and optimization of the supporting structure of a propulsion shaft system by an FRF-based substructuring method [J].Journal of Vibration and Shock, 2019, 38(4): 33-39.
[14]周俊贤, 吕中荣, 汪利.基于灵敏度分析和不同数据融合的损伤识别方法[J].振动与冲击, 2019, 38(18): 236-241.
ZHOU Junxian, L Zhongrong, WANG Li.Damage identification based on the sensitivity analysis with hybrid data[J].Journal of Vibration and Shock,2019, 38(18): 236-241.
[15]ESFANDIARI A, NABIYAN M S, ROFOOEI F R.Structural damage detection using principal component analysis of frequency response function data[J].Structural Control and Health Monitoring, 2020, 27(7): e2550.
[16]WANG D, XU W J.Minimum weight optimal design of truss structure with frequency response function constraint[J].Journal of Aerospace Engineering, 2020, 33(4): 04020028.
[17]WANG B P, APTE A P.Complex variable method for eigen-solution sensitivity analysis[J].AIAA Journal, 2006, 44(12): 2958-2961.
[18]GAO X W, LIU D D, CHEN P C.Internal stresses in inelastic BEM using complex-variable differentiation[J].Computational Mechanics, 2002, 28(1): 40-46.
[19]GARZA J, MILLWATER H.Multicomplex Newmark-β time integration method for sensitivity analysis in structural dynamics[J].AIAA Journal, 2015, 53(5): 1188-1198.
[20]LANTOINE G, RUSSELL R P, DARGENT T.Using multicomplex variables for automatic computation of high-order derivatives[J].Acm Transactions on Mathematical Software, 2012, 38(3): 1-21.
[21]ROCHON D.A generalized mandelbrot set for bicomplex numbers[J].Fractals-complex Geometry Patterns & Scaling in Nature & Society, 2000, 8(4): 355-368.
[22]ROCHON D, TREMBLAY S.Bicomplex quantum mechanics: I.The generalized schrdinger equation[J].Advances in Applied Clifford Algebras, 2004, 14(2): 231-248.
[23]PRICE G B.An introduction to multicomplex spaces and functions[M].New York: Marcel Dekker, 1991.
[24]LINK M, FRISWELL M I.Working group 1: generation of validated structural dynamic models-results of a benchmark study utilising the GARTEUR SM-AG19 test-bed[J].Mechanical System and Signal Processing, 2003, 17(1): 9-20.

PDF(2054 KB)

Accesses

Citation

Detail

段落导航
相关文章

/