3003H18铝合金蜂窝夹芯板超声疲劳试验研究

王长凯,陈煊,程礼,丁均梁, 王博涵

振动与冲击 ›› 2021, Vol. 40 ›› Issue (18) : 174-182.

PDF(2661 KB)
PDF(2661 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (18) : 174-182.
论文

3003H18铝合金蜂窝夹芯板超声疲劳试验研究

  • 王长凯1,陈煊1,程礼1,2,丁均梁1, 王博涵1
作者信息 +

Ultrasonic fatigue test of a 3003H18 aluminum honeycomb sandwich panel

  • WANG Changkai1,CHEN Xuan1,CHENG Li1,2,DING Junliang1,WANG Bohan1
Author information +
文章历史 +

摘要

蜂窝夹芯材料在航空工业领域具有广泛应用,其长寿命疲劳问题也日益凸显。针对航空常用3003H18铝合金蜂窝夹芯板,采用ABAQUS商业有限元软件研究其超声疲劳试件设计方法及尺寸对固有振动频率的影响。同时利用超声疲劳试验系统对试件进行加载以确定该方法的可行性及试验效果。结果表明:试件长度和芯子厚度对固有振动频率有显著影响,当长度减小以及芯子厚度增大时试件振动频率变大,在此基础上得到振动频率与试件尺寸的经验公式;设计后的铝合金蜂窝夹芯板试件能够与超声疲劳系统在20 kHz频率下发生谐振,满足试验要求;对疲劳加载过程中试件底端振幅进行实时测量,发现蜂窝板底端输出振幅明显小于系统输入振幅,具有良好的吸能特性;采用光学显微镜对失效试件进行观察,发现其主要失效模式为芯子的破坏与面板-芯子脱胶。

Abstract

Honeycomb sandwich material has a wide range of applications in the aviation industry, and its long-life fatigue problem has become increasingly prominent.Aiming at a 3003H18 aluminum honeycomb sandwich panel, the ABAQUS commercial finite element software was used to analyze the design method of ultrasonic fatigue specimens and the influence of size on its natural vibration frequency.At the same time, an ultrasonic fatigue testing system was used to test the feasibility and experimental effect of the specimen design method.The results show that the length of the specimen and the thickness of the core have a significant effect on its natural vibration frequency.When the length decreases and the thickness of the core increases, the vibration frequency of the specimen becomes higher.On this basis, an empirical formula related to the vibration frequency and the size of the specimen was obtained.The designed aluminum honeycomb sandwich panel specimen can resonate with the ultrasonic fatigue system at 20 kHz frequency, which meets the experimental requirements.Real-time measurements of the amplitude at the bottom end of the specimen during the fatigue loading process show that the output amplitude of the honeycomb panel is obviously smaller than the input amplitude of the system.It shows that the honeycomb panel has good energy absorption characteristics.The failure specimens were observed with an optical microscope and it is found that the main failure modes are core destruction and panel-core debonding.

关键词

铝合金 / 蜂窝夹芯板 / 超声疲劳系统 / 有限元仿真 / 损伤分析

Key words

aluminum alloy / honeycomb sandwich panel / ultrasonic fatigue testing system / finite element analysis / damage analysis

引用本文

导出引用
王长凯,陈煊,程礼,丁均梁, 王博涵. 3003H18铝合金蜂窝夹芯板超声疲劳试验研究[J]. 振动与冲击, 2021, 40(18): 174-182
WANG Changkai,CHEN Xuan,CHENG Li,DING Junliang,WANG Bohan. Ultrasonic fatigue test of a 3003H18 aluminum honeycomb sandwich panel[J]. Journal of Vibration and Shock, 2021, 40(18): 174-182

参考文献

[1]刘敏静,郝志勇.复合材料蜂窝夹层结构在飞机中的应用[J].科技导报, 2016,34(494):23-27.
LIU Minjing, HAO Zhiyong.Application of composite honeycomb sandwich structure in aircraft[J].Science and Technology Review, 2016,34(494): 23-27.
[2]杜善义.先进复合材料与航空航天[J].复合材料学报, 2007, 24(1):1-14.
DU Shanyi.Advanced composite materials and aerospace[J].Acta Materiae Compositae Sinica, 2007, 24(1):1-14.
[3]DU S Y, GUAN Z D.Strategic considerations for development of advanced composite technology for large commercial aircraft in China[J].Acta Materiae Compositae Sinica, 2008, 25(1):1-10.
[4]杨乃宾, 梁伟.大飞机复合材料结构设计导论[M].北京:航空工业出版社,2009.
[5]陈龙辉, 付杰斌, 王强, 等.复合材料夹层结构在航空领域的应用[J].教练机, 2014 (2):44-48.
CHEN Longhui, FU Jiebin, WANG Qiang, et al.Application of composite sandwich structure in aviation field[J].Trainer, 2014(2):44-48.
[6]程文礼, 袁超, 邱启艳, 等.航空用蜂窝夹层结构及制造工艺[J].航空制造技术, 2015(7):94-98.
CHENG Wenli, YUAN Chao, QIU Qiyan, et al.Honeycomb sandwich structure and manufacturing technology for aviation[J].Aeronautical Manufacturing Technology, 2015(7):94-98.
[7]周连会.金属蜂窝结构在某机上的应用[J].航空制造技术, 1986,20(4): 23-24.
ZHOU Lianhui.Application of metal honeycomb structure in a certain aircraft[J].Aeronautical Manufacturing Technology, 1986,20(4): 23-24.
[8]李勇.直九机用Nomex蜂窝研究[J].航空材料学报,1996,16(l): 47-54.
LI Yong.Research on nomex honeycomb for Zhijiu aircraft[J].Journal of Aeronautical Materials,1996,16(l): 47-54.
[9]马铭泽,姚卫星,陈炎.蜂窝夹芯板疲劳研究进展[J]航空工程进展, 2019,10(2):155-161.
MA Mingze, YAO Weixing, CHEN Yan.Research progress on fatigue of honeycomb sandwich panel[J].Advances in Aeronautical Science and Engineering, 2019,10(2):155-161.
[10]HUANG J S, LIN J Y.Fatigue of cellular materials[J].Acta Materialia,1996,44(1): 289-296.
[11]ELMAHI A E, FAROOQ M K, SAHRAOUI S, et al.Modelling the flexural behaviour of sandwich composite materials under cyclic fatigue[J].Materials & Design, 2004,25(3):199-208.
[12]BELOUETTAR S, ABBADIA A, AZARI Z, et al.Experimental investigation of static and fatigue behaviour of composites honeycomb materials using four point bending tests [J].Composite Structures, 2009, 17(10): 1533-1547.
[13]WAHL L, MAAS S, WALDMANN D, et al.Fatigue in the core of aluminum honeycomb panels: lifetime prediction compared with fatigue tests[J].International Journal of Damage Mechanics, 2014, 23(5): 661-683.
[14]MA M Z, YAO W X, WEN J, et al.Fatigue behavior of composite sandwich panels under three point bending load[J].Polymer Testing, 2020, 91:106795.
[15]WU X R, YU H J, GUO L C, et al.Experimental and numerical investigation of static and fatigue behaviors of composites honeycomb sandwich structure[J].Composite Structures, 2019,213:165-172.
[16]BURMAN M, DAN Z.Fatigue of undamaged and damaged honeycomb sandwich beams[J].Journal of Sandwich Structures and Materials, 2000,2(1):50-74.
[17]汪勇,汤剑飞.蜂窝夹层复合材料老化强度与疲劳性能的试验研究[J].实验力学, 2004,19(3): 381-385.
WANG Yong, TANG Jianfei.Experimental study on aging strength and fatigue properties of honeycomb sandwich composites[J].Journal of Experimental Mechanics, 2004,19(3):381-385.
[18]BELINGARDI G, MARTELLA P, PERONI L.Fatigue analysis of honeycomb-composite sandwich beams[J].Composites Part A: Applied Science and Manufacturing,2007,38(4):1183-1911.
[19]JEN Y M, CHANG L Y.Evaluating bending fatigue strength of aluminum honeycomb sandwich beams using local parameters [J].International Journal of Fatigue, 2008,30(6):1103-1114.
[20]JEN Y M, CHANG L Y.Effect of thickness of face sheet on the bending fatigue strength of aluminum honeycomb sandwich beams [J].Engineering Failure Analysis, 2009,16(4):1282-1293.
[21]奕旭,梁军,王超,等.金属蜂窝夹芯板疲劳行为的试验研究[J].材料工程,2008(增刊1):149-152.
LUAN Xu, LIANG Jun, WANG Chao, et al.Experimental study on fatigue behavior of metal honeycomb sandwich panel[J].Journal of Materials Engineering, 2008(Suppl.1):149-152.
[22]架旭.金属蜂窝夹芯板疲劳和冲击力学性能研究[D].哈尔滨:哈尔滨工业大学,2009.
[23]LU J, ZOU G P, CAO Y.Fatigue life prediction investigation on steel honeycomb sandwich beams at high-temperature[J].Key Engineering Materials, 2011, 488/489:698-701.
[24]NAITO T, UEDA H, KIKUCHI M.Fatigue behavior of carburized steel with internal oxides and nonmartensitic microstructure near the surface[J].Metallurgical Transactions A, 1984, 15(7):1431-1436.
[25]SHANYAVSKIY A.Very-high-cycle-fatigue of in-service air-engine blades, compressor and turbine[J].Science China Physics, Mechanics & Astronomy, 2014, 57(1):19-29.
[26]MICHEL S A, KIESELBACH R, MARTENS H J.Fatigue strength of carbon fibre composites up to the gigacycle regime (gigacycle composites)[J].International Journal of Fatigue, 2006,28(3): 261-270.
[27]GUDE M, HUFENBACH W, KOCH I, et al.Fatigue testing of carbon fibre reinforced polymers under VHCF loading[J].Procedia Materials Science, 2013, 2: 18-24.
[28]ADAM T J, HORST P.Experimental investigation of the very high cycle fatigue of GFRP [90/0]s cross ply specimens subjected to high frequency four point bending[J].Composites Science and Technology, 2014, 101: 62-70.
[29]陈超, 陈煊, 程礼.基于超高周三点弯曲的复合材料试验方法[J].振动与冲击, 2019, 38(12): 239-245.
CHEN Chao, CHEN Xuan, CHENG Li.A VHCF test method based on three-point bending for composite[J].Journal of Vibration and Shock, 2019, 38(12): 239-245.
[30]DING J L, CHENG L, CHEN X, et al.A review on ultra-high cycle fatigue of CFRP-science direct[J].Composite Structures, 2021, 256:113058.
[31]DING J L, CHENG L.Ultra-high three-point bending fatigue performance of nano-silica-reinforced CFRP[J].International Journal of Fatigue, 2021,145:106085.
[32]程礼, 陈皎, 李全通,等.超高周疲劳与断裂[M].北京:国防工业出版社,2017.
[33]王中钢. 轻质蜂窝结构力学[M].北京:科学出版社,2019.

PDF(2661 KB)

Accesses

Citation

Detail

段落导航
相关文章

/