三维离散支承浮置板轨道动力响应频域模型研究

谭新宇,刘卫丰

振动与冲击 ›› 2021, Vol. 40 ›› Issue (18) : 183-189.

PDF(1936 KB)
PDF(1936 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (18) : 183-189.
论文

三维离散支承浮置板轨道动力响应频域模型研究

  • 谭新宇,刘卫丰
作者信息 +

Dynamic response analysis model of a 3D floating slab track with discrete supports in frequency domain

  • TAN Xinyu,LIU Weifeng
Author information +
文章历史 +

摘要

基于欧拉梁理论、Kirchhoff薄板理论和无限周期结构理论,建立三维离散支承浮置板轨道动力响应频域模型。钢轨和浮置板的位移均通过模态叠加法进行表示,其中浮置板振型函数由双向梁振型函数组合得到。利用移动谐振荷载作用下无限周期结构理论及振型函数正交等性质,通过求解轨道在一个周期内的动力响应,进而得到无限长轨道上任一点的动力响应。该研究对二维、三维模型的计算结果进行对比,并对左右钢轨作用激振频率不同的单位移动谐振荷载时浮置板轨道的动力响应进行研究。结果表明:移动谐振荷载作用于左侧钢轨时,由于浮置板和钢轨的耦合作用,会同时激发右侧钢轨的振动,且右轨振动响应的频域特征与浮置板振动响应特征较为相似;当两钢轨上荷载的激振频率不同时,较低激振频率的荷载作用侧的轨道振动响应更为强烈。

Abstract

A floating slab track model was established in frequency domain, which was based on the Euler-beam theory, Kirchhoff theory and the theory of periodic-infinite structure.The displacements of the rails and slabs were expressed by mode superposition method.According to the characteristics of periodic structures and the orthogonality of the mode functions, the dynamic response of the track at any position could be obtained by calculating the response at the corresponding point in the range of one slab when harmonic loads moving along the rails.The track dynamic responses calculated by the 2D and the 3D model were compared.By using the model, the track displacement responses were obtained when the excitation frequencies of moving harmonic loads on both rails are different.The results show that: when a unit harmonic load moves along the left rail, the right rail also vibrates because of the effect of the slab, and the dynamic performance of the right rail is much similar to the performance of the slab.When the frequencies of the loads moving along the two rails are different, the dynamic response on the track side subjected to the load with lower frequency is much higher than that on the other side.

关键词

浮置板轨道 / 动力响应 / 三维频域模型 / 周期结构理论 / 模态叠加法

Key words

floating slab track / dynamic response / 3D model in frequency domain / periodic structure theory / mode superposition method

引用本文

导出引用
谭新宇,刘卫丰. 三维离散支承浮置板轨道动力响应频域模型研究[J]. 振动与冲击, 2021, 40(18): 183-189
TAN Xinyu,LIU Weifeng. Dynamic response analysis model of a 3D floating slab track with discrete supports in frequency domain[J]. Journal of Vibration and Shock, 2021, 40(18): 183-189

参考文献

[1]刘维宁, 马蒙, 刘卫丰, 等.我国城市轨道交通环境振动影响的研究现况[J].中国科学: 技术科学, 2016, 46(6): 547-559.
LIU Weining, MA Meng, LIU Weifeng, et al.Overview on current research of environmental vibration influence induced by urban mass transit in China[J].Scientia Sinica: Technologica, 2016, 46(6): 547-559.
[2]MATIAS S R, FERREIRA P A.Railway slab track systems: review and research potentials[J].Structure and Infrastructure Engineering, 2020,16(12): 1635-1653.
[3]翟婉明, 韩卫军, 蔡成标,等.高速铁路板式轨道动力特性研究[J].铁道学报, 1999, 21(6):64-69.
ZHAI Wanming, HAN Weijun, CAI Chengbiao, et al.Dynamic properties of high-speed railway slab track [J].Journal of the China Railway Society, 1999, 21(6):64-69.
[4]李增光, 吴天行.浮置板轨道动柔度计算方法及隔振性能研究[J].振动工程学报, 2007, 20(3): 207-212.
LI Zengguang, WU Tianxing.Study on the vibration isolation performance of floating slab track using dynamic receptance method[J].Journal of Vibration Engineering, 2007, 20(3): 207-212.
[5]黄强, 黄宏伟, 张冬梅.移动荷载作用下离散支承浮置板轨道振动响应研究[J].振动与冲击, 2018, 37(19): 190-197.
HUANG Qiang, HUANG Hongwei, ZHANG Dongmei.Vibration response of discretely supported floating slab track under a moving load[J].Journal of Vibration and Shock, 2018, 37(19): 190-197.
[6]HUSSEIN M F M, HUNT H E M.Modelling of floating-slab tracks with continuous slabs under oscillating moving loads[J].Journal of Sound and Vibration, 2006, 297(1/2): 37-54.
[7]HUSSEIN M F M, HUNT H E M.Modelling of floating-slab track with discontinuous slab: part 1: response to oscillating moving loads[J].Journal of Low Frequency Noise, Vibration and Active Control, 2006, 25(1): 23-39.
[8]马龙祥.基于无限—周期结构理论的车轨耦合及隧道—地层振动响应分析模型研究[D].北京: 北京交通大学, 2014.
[9]ZHAI W M, WANG K Y, CAI C B.Fundamentals of vehicle-track coupled dynamics[J].Vehicle System Dynamics, 2009, 47(11): 1349-1376.
[10]YANG J J, LAN K Y, ZHU S Y, et al.Dynamic analysis on the stiffness enhancement measure of the slab end for a discontinuous floating slab track[J].Computing in Science & Engineering, 2018, 21(3): 51-59.
[11]SHENG X, ZHONG T, LI Y.Vibration and sound radiation of slab high-speed railway tracks subject to a moving harmonic load[J].Journal of Sound and Vibration, 2017, 395: 160-186.
[12]杜林林. 地铁列车曲线运行车轨耦合解析模型及振源特性研究[D].北京:北京交通大学, 2018.
[13]BELOTSERKOVSKIY P M.On the oscillations of infinite periodic beams subjected to a moving concentrated force[J].Journal of Sound and Vibration, 1996, 193(3): 705-712.
[14]马龙祥,刘维宁, 李克飞.移动荷载作用下浮置板轨道振动响应的频域快速数值算法[J].铁道学报, 2014, 36(2):86-94.
MA Longxiang, LIU Weining, LI Kefei.Fast numerical algorithm of floating slab track vibration response under moving loads in the frequency domain[J].Journal of the China Railway Society, 2014, 36(2):86-94.
[15]曹志远. 板壳振动理论[M].北京:中国铁道出版社, 1989.
[16]曹艳梅. 列车引起的自由场地及建筑物振动的理论分析和试验研究[D].北京:北京交通大学, 2006.
[17]秦冲. 激励方式对地铁浮置板轨道减振性能评价影响研究[D].北京:北京交通大学, 2019.
[18]李林峰, 马蒙, 刘维宁, 等.不同激励作用下钢弹簧浮置板轨道减振效果研究[J].工程力学, 2018, 35(增刊1):253-258.
LI Linfeng, MA Meng, LIU Weining, et al.Analysis for the vibration reduction characteristics of steel spring floating slab tracks under different types of excitation[J].Engineering Mechanics, 2018, 35(Suppl.1):253-258.

PDF(1936 KB)

Accesses

Citation

Detail

段落导航
相关文章

/