基于VMD-RQA的直线振动筛激振力不平衡故障诊断

范伟,何越宙,王寅,陈华

振动与冲击 ›› 2021, Vol. 40 ›› Issue (18) : 25-32.

PDF(1558 KB)
PDF(1558 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (18) : 25-32.
论文

基于VMD-RQA的直线振动筛激振力不平衡故障诊断

  • 范伟1,2,何越宙1,王寅1,陈华1
作者信息 +

Early unbalance fault diagnosis on the exciting force of a linear vibrating screen based on VMD-RQA

  • FAN Wei1,2,HE Yuezhou1,WANG Yin1,CHEN Hua1
Author information +
文章历史 +

摘要

针对直线振动筛早期激振力不平衡故障难以诊断问题,提出了一种基于变分模态分解(VMD)和递归量化分析(RQA)的故障诊断方法。对振动信号进行VMD分解,将直线振动筛基频信号分离,并得到被淹没的各阶高频分量;绘制不同信号分量的动力特性递归图,计算递归图的量化指标,组成故障信号的非线性、非平稳性评价特征向量,将高维特征向量输入机器学习分类器中进行识别诊断,并与传统的特征提取方法比较。试验结果表明:在直线振动筛激振力不平衡故障现场,该方法所提取的特征参数具有最高识别精度,综合识别率为99.13%;且应用于旋转机械滚动轴承实例数据,综合识别率为99.38%,说明该方法具有一定的通用性和工程应用价值。

Abstract

Aiming at the difficulty to diagnose the early unbalance fault on the exciting force of a linear vibrating screen, a fault diagnosis method based on variational mode decomposition(VMD) and recurrence quantitative analysis(RQA) was proposed.Firstly, the vibration signal was decomposed by VMD, the fundamental frequency signal of the linear vibrating screen was separated, and the submerged high frequency components were obtained.Then, the dynamic characteristic recurrence plots of different signal components were drawn, and the quantitative indexes of the recurrence plots were calculated to constitute a nonlinear and nonstationary evaluation feature vector of the fault signal.Finally, the high-dimensional eigenvectors were input into a machine learning classifier for diagnosis, and its results were compared with those of traditional feature extraction methods.The results show that, the characteristic parameters extracted by the method has the highest recognition accuracy in the excitation force unbalance fault experiment, and the comprehensive recognition rate is 99.13%.In addition, applying the method to the fault diagnosis of   rotating machinery bearings, the comprehensive recognition rate reaches 99.38%, indicating that the method has certain reliability and engineering application value.

关键词

直线振动筛 / 变分模态分解(VMD) / 递归量化分析 / 故障诊断

Key words

linear vibrating screen / variational mode decomposition(VMD) / recurrence quantitative analysis(RQA) / fault diagnosis

引用本文

导出引用
范伟,何越宙,王寅,陈华. 基于VMD-RQA的直线振动筛激振力不平衡故障诊断[J]. 振动与冲击, 2021, 40(18): 25-32
FAN Wei,HE Yuezhou,WANG Yin,CHEN Hua. Early unbalance fault diagnosis on the exciting force of a linear vibrating screen based on VMD-RQA[J]. Journal of Vibration and Shock, 2021, 40(18): 25-32

参考文献

[1]李栋,刘跃,王帅,等.矿用直线振动筛结构故障分析[J].工矿自动化, 2020,46(5): 34-38.
LI Dong, LIU Yue, WANG Shuai, et al.Structural fault of linear vibrating screen for mine[J].Automation of Industry and Mine, 2020,46(5): 34-38.
[2]HUANG N E,SHEN Z,LONG S R,et al.The empirical mode decomposition and the Hilbert spectrum for non-linear and non-stationary time series analysis [J].Proceedings of the Royal Society Lond, 1998,454: 903-995.
[3]池永为,杨世锡,焦卫东,等.基于EMD-DCS的滚动轴承伪故障特征识别方法[J].振动与冲击, 2020,39(9): 9-16.
CHI Yongwei, YANG Shixi, JIAO Weidong, et al.Pseudo-fault feature identification method for rolling bearings based on EMD-DCS[J].Journal of Vibration and Shock, 2020,39(9): 9-16.
[4]胡茑庆,陈徽鹏,程哲,等.基于经验模态分解和深度卷积神经网络的行星齿轮箱故障诊断方法[J].机械工程学报, 2019,55(7): 9-18.
HU Niaoqing, CHEN Huipeng, CHENG Zhe, et al.Fault diagnosis method of planetary gearbox based on empirical mode decomposition and deep convolutional neural network[J].Journal of Mechanical Engineering, 2019,55(7): 9-18.
[5]WU Z H, HUANG N E.Ensemble empirical mode decomposition: a noise-assisted data analysis method[J].Advances in Adaptive Data Analysis, 2011,1(1): 1-41.
[6]TORRES M E, COLOMINAS M A, SCHLOTTHAUER G, et al.A complete ensemble empirical mode decomposition with adaptive noise[C]// 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).Prague: IEEE, 2011.
[7]DRAGOMIRETSKIY K, ZOSSO D.Variational mode decomposition[J].IEEE Transactions on Signal Processing, 2014,62(3): 531-544.
[8]徐元博,蔡宗琰,胡永彪,等.强噪声背景下频率加权能量算子和变分模态分解在轴承故障提取中的应用[J].振动工程学报, 2018,31(3): 513-522.
XU Yuanbo, CAI Zongyan, HU Yongbiao, et al.Application of frequency weighted energy operator and variational mode decomposition in bearing fault extraction under strong noise background[J].Journal of Vibration Engineering, 2018,31(3): 513-522.
[9]徐元博,蔡宗琰.变分模态分解和K-L散度在振动筛轴承故障诊断中的应用[J].噪声与振动控制, 2017,37(4): 160-165.
XU Yuanbo, CAI Zongyan.Application of variational mode decomposition and K-L divergent in fault diagnosis of shaking screen bearing[J].Noise and Vibration Control, 2017,37(4): 160-165.
[10]ECKMANN J P, KAMPHORST S O, RUELLE D.Recurrence plots of dynamical systems[J].Europhysics Letters, 1987,4(9): 973-977.
[11]WEBBER C L Jr, MARWAN N.Recurrence quantification analysis[M].New York: John Wiley & Sons, Inc., 2015.
[12]PHAM T D, WARDELL K, EKLUND A, et al.Classification of short time series in early Parkinson’s disease with deep learning of fuzzy recurrence plots[J].IEEE/CAA Journal of Automatica Sinica, 2019,6(6): 1306-1317.
[13]XIAO D Y, HUANG Y X, QIN C J, et al.Fault diagnosis of induction motors using recurrence quantification analysis and LSTM with weighted BN[J].Shock and Vibration, 2019,2019: 8325218.
[14]XU Z D, WANG H, WAN H P, et al.Quantitative assessment of nonstationarity of wind speed signal using recurrence plot[J].Journal of Aerospace Engineering, 2019,32(6): 04019094.
[15]郑小霞,周国旺,任浩翰,等.基于变分模态分解和排列熵的滚动轴承故障诊断[J].振动与冲击, 2017,36(22): 22-28.
ZHENG Xiaoxia, ZHOU Guowang, REN Haohan, et al.A rolling bearing fault diagnosis method based on variational mode decomposition and permutation entropy[J].Journal of Vibration and Shock, 2017,36(22): 22-28.
[16]SAUER T, YORKE J A, CASDAGLI M.Embedology[J].Journal of Statistical Physics, 1991,65(3/4): 579-616.
[17]TAKENS F.Detecting strange attractors in turbulence[M].Berlin: Springer, 1981.
[18]FRASER A M, SWINNEY H L.Independent coordinates for strange attractors from mutual information[J].Physical Review A: Atomic, Molecular & Optical Physics, 1986,33(2): 1134-1140.
[19]CAO L Y.Practical method for determining the minimum embedding dimension of a scalar time series[J].Physica D: Nonlinear Phenomena, 1997,110(1): 43-50.
[20]HAUKE K K, DONNER R V, HEITZIG J, et al.Recurrence threshold selection for obtaining robust recurrence characteristics in different embedding dimensions[J].Chaos, 2018,28(8): 085720.
[21]GOSWAMI B.A brief introduction to nonlinear time series analysis and recurrence plots[J].Vibration, 2019,2(4): 332-368.

PDF(1558 KB)

629

Accesses

0

Citation

Detail

段落导航
相关文章

/