[1]李栋,刘跃,王帅,等.矿用直线振动筛结构故障分析[J].工矿自动化, 2020,46(5): 34-38.
LI Dong, LIU Yue, WANG Shuai, et al.Structural fault of linear vibrating screen for mine[J].Automation of Industry and Mine, 2020,46(5): 34-38.
[2]HUANG N E,SHEN Z,LONG S R,et al.The empirical mode decomposition and the Hilbert spectrum for non-linear and non-stationary time series analysis [J].Proceedings of the Royal Society Lond, 1998,454: 903-995.
[3]池永为,杨世锡,焦卫东,等.基于EMD-DCS的滚动轴承伪故障特征识别方法[J].振动与冲击, 2020,39(9): 9-16.
CHI Yongwei, YANG Shixi, JIAO Weidong, et al.Pseudo-fault feature identification method for rolling bearings based on EMD-DCS[J].Journal of Vibration and Shock, 2020,39(9): 9-16.
[4]胡茑庆,陈徽鹏,程哲,等.基于经验模态分解和深度卷积神经网络的行星齿轮箱故障诊断方法[J].机械工程学报, 2019,55(7): 9-18.
HU Niaoqing, CHEN Huipeng, CHENG Zhe, et al.Fault diagnosis method of planetary gearbox based on empirical mode decomposition and deep convolutional neural network[J].Journal of Mechanical Engineering, 2019,55(7): 9-18.
[5]WU Z H, HUANG N E.Ensemble empirical mode decomposition: a noise-assisted data analysis method[J].Advances in Adaptive Data Analysis, 2011,1(1): 1-41.
[6]TORRES M E, COLOMINAS M A, SCHLOTTHAUER G, et al.A complete ensemble empirical mode decomposition with adaptive noise[C]// 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).Prague: IEEE, 2011.
[7]DRAGOMIRETSKIY K, ZOSSO D.Variational mode decomposition[J].IEEE Transactions on Signal Processing, 2014,62(3): 531-544.
[8]徐元博,蔡宗琰,胡永彪,等.强噪声背景下频率加权能量算子和变分模态分解在轴承故障提取中的应用[J].振动工程学报, 2018,31(3): 513-522.
XU Yuanbo, CAI Zongyan, HU Yongbiao, et al.Application of frequency weighted energy operator and variational mode decomposition in bearing fault extraction under strong noise background[J].Journal of Vibration Engineering, 2018,31(3): 513-522.
[9]徐元博,蔡宗琰.变分模态分解和K-L散度在振动筛轴承故障诊断中的应用[J].噪声与振动控制, 2017,37(4): 160-165.
XU Yuanbo, CAI Zongyan.Application of variational mode decomposition and K-L divergent in fault diagnosis of shaking screen bearing[J].Noise and Vibration Control, 2017,37(4): 160-165.
[10]ECKMANN J P, KAMPHORST S O, RUELLE D.Recurrence plots of dynamical systems[J].Europhysics Letters, 1987,4(9): 973-977.
[11]WEBBER C L Jr, MARWAN N.Recurrence quantification analysis[M].New York: John Wiley & Sons, Inc., 2015.
[12]PHAM T D, WARDELL K, EKLUND A, et al.Classification of short time series in early Parkinson’s disease with deep learning of fuzzy recurrence plots[J].IEEE/CAA Journal of Automatica Sinica, 2019,6(6): 1306-1317.
[13]XIAO D Y, HUANG Y X, QIN C J, et al.Fault diagnosis of induction motors using recurrence quantification analysis and LSTM with weighted BN[J].Shock and Vibration, 2019,2019: 8325218.
[14]XU Z D, WANG H, WAN H P, et al.Quantitative assessment of nonstationarity of wind speed signal using recurrence plot[J].Journal of Aerospace Engineering, 2019,32(6): 04019094.
[15]郑小霞,周国旺,任浩翰,等.基于变分模态分解和排列熵的滚动轴承故障诊断[J].振动与冲击, 2017,36(22): 22-28.
ZHENG Xiaoxia, ZHOU Guowang, REN Haohan, et al.A rolling bearing fault diagnosis method based on variational mode decomposition and permutation entropy[J].Journal of Vibration and Shock, 2017,36(22): 22-28.
[16]SAUER T, YORKE J A, CASDAGLI M.Embedology[J].Journal of Statistical Physics, 1991,65(3/4): 579-616.
[17]TAKENS F.Detecting strange attractors in turbulence[M].Berlin: Springer, 1981.
[18]FRASER A M, SWINNEY H L.Independent coordinates for strange attractors from mutual information[J].Physical Review A: Atomic, Molecular & Optical Physics, 1986,33(2): 1134-1140.
[19]CAO L Y.Practical method for determining the minimum embedding dimension of a scalar time series[J].Physica D: Nonlinear Phenomena, 1997,110(1): 43-50.
[20]HAUKE K K, DONNER R V, HEITZIG J, et al.Recurrence threshold selection for obtaining robust recurrence characteristics in different embedding dimensions[J].Chaos, 2018,28(8): 085720.
[21]GOSWAMI B.A brief introduction to nonlinear time series analysis and recurrence plots[J].Vibration, 2019,2(4): 332-368.