基于改进型GDQ法FGM纳米梁的热-机耦合振动及屈曲特性分析

周凤玺,蒲育

振动与冲击 ›› 2021, Vol. 40 ›› Issue (18) : 47-55.

PDF(1349 KB)
PDF(1349 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (18) : 47-55.
论文

基于改进型GDQ法FGM纳米梁的热-机耦合振动及屈曲特性分析

  • 周凤玺1,蒲育1,2
作者信息 +

Modified GDQ method for vibration and buckling analyses of FGM nanobeams subjected to thermal-mechanical loads

  • ZHOU Fengxi1,PU Yu1,2
Author information +
文章历史 +

摘要

基于Eringen非局部线弹性理论,采用n阶广义梁理论(GBT),应用改进型广义微分求积(MGDQ)法数值研究了初始轴向机械力及热载荷共同作用下功能梯度材料(FGM)纳米梁的耦合振动及耦合屈曲特性。考虑了材料性质的温度相关性,且温度沿梁的厚度方向按不同类型稳态分布,采用Voigt混合幂率模型表征FGM纳米梁的材料属性。在Hamilton体系下统一建立描述结构耦合振动及屈曲问题力学模型的控制微分方程。通过引入梁边界条件控制参数,实施了3种典型边界FGM纳米梁耦合振动响应MGDQ法求解的MATLAB统一化编程。基于屈曲与振动这两类静动态响应之间的二元耦联性,通过编写相应循环子程序用来获得屈曲静态响应。与已有研究结果对比表明:该分析方法切实可行、行之有效,极大地提高了计算效率。最后,分析了梁理论、边界条件、尺度效应非局部参数、初始轴向机械力、温度分布、升温、热-机耦合效应、材料组分梯度指标、跨厚比等诸多参数对FGM纳米梁振动及屈曲特性的影响。

Abstract

Based on Eringen’s nonlocal linear elastic theory and n-th order generalized beam theory (GBT), the coupled vibration and buckling characteristics of functionally graded material (FGM) nanobeams subjected to thermal-mechanical loads were investigated by using a modified generalized differential quadrature (MGDQ) method.The material properties were temperature-dependent according to the Voigt mixture power-law model and various types of temperature distributions were assumed to be steady along the thickness direction of the structure.The governing differential equations for the coupled vibration and buckling of the system were derived unifiedly in accordance with the Hamilton’s principle.By introducing control parameters for three different kinds of boundary conditions, the MGDQ method was  used to solve the coupled vibration response of the structure with the MATLAB procedure.A loop subprogram was also written to obtain the static responses based on the duality between the vibration and buckling responses of FGM nanobeams.The MGDQ method presented was validated to be available and highly efficient by comparison with those of available results in the literature.Finally, the effects of various beam theories, boundary conditions, nonlocal scale parameters, initial axial mechanical loads, various types of temperature distributions, temperature rises, thermal-mechanical loads, material graded index and slenderness ratios on the vibration and buckling characteristics of FGM nanobeams were studied.

关键词

功能梯度材料(FGM)纳米梁 / 尺度效应 / n阶广义梁理论(GBT) / 热-机耦合载荷 / 频率 / 临界屈曲载荷 / 改进型广义微分求积(MGDQ)法

Key words

functionally graded material(FGM) nanobeam / size-dependent effect / n-th order generalized beam theory(GBT) / thermal-mechanical load / frequency / buckling load / modified generalized differential quadrature(MGDQ) method

引用本文

导出引用
周凤玺,蒲育. 基于改进型GDQ法FGM纳米梁的热-机耦合振动及屈曲特性分析[J]. 振动与冲击, 2021, 40(18): 47-55
ZHOU Fengxi,PU Yu. Modified GDQ method for vibration and buckling analyses of FGM nanobeams subjected to thermal-mechanical loads[J]. Journal of Vibration and Shock, 2021, 40(18): 47-55

参考文献

[1]ERINGEN A C.Nonlocal continuum field theories[M].New York: Springer, 2002.
[2]滕兆春, 刘露, 衡亚洲.弹性地基上受压矩形纳米板的自由振动与屈曲特性[J].振动与冲击, 2019,38(16): 208-216.
TENG Zhaochun, LIU Lu, HENG Yazhou.Free vibration and buckling characteristics of compressed nanoplates resting on elastic foundation[J].Journal of Vibration and Shock, 2019,38(16): 208-216.
[3]THAI H T.A nonlocal beam theory for bending, buckling, and vibration of nanobeams[J].International Journal of Engineering Science, 2012,52: 56-64.
[4]KE L L, WANG Y S.Thermoelectric-mechanical vibration of piezoelectric nanobeams based on the nonlocal theory[J].Smart Materials and Structure, 2012,21(2): 1-11.
[5]刘灿昌, 裘进浩, 季宏丽, 等.考虑非局部效应的纳米梁非线性振动[J].振动与冲击, 2013,32(4): 158-162.
LIU Canchang, QIU Jinhao, JI Hongli, et al.Non-local effect on non-linear vibration characteristics of a nano-beam[J].Journal of Vibration and Shock, 2013,32(4): 158-162.
[6]张大鹏, 雷勇军.基于非局部理论的黏弹性地基上欧拉梁自由振动特性分析[J].振动与冲击, 2017,36(1): 88-95.
ZHANG Dapeng, LEI Yongjun.Free vibration characteristics of an Euler-Bernoulli beam on a viscoelastic foundation based on nonlocal continuum theory[J].Journal of Vibration and Shock, 2017,36(1): 88-95.
[7]RAHMANI O, PEDRAM O.Analysis and modeling the size effect on vibration of functionally graded nanobeams based on nonlocal Timoshenko beam theory[J].International Journal of Engineering Science, 2014,77: 55-70.
[8]EBRAHIMI F, SALARI E.Size-dependent free flexural vibrational behavior of functionally graded nanobeams using semi-analytical differential transform method[J].Composites Part B: Engineering, 2015,79: 156-169.
[9]EBRAHIMI F, SALARI E.Thermo-mechanical vibration analysis of nonlocal temperature-dependent FG nanobeams with various boundary conditions[J].Composites Part B: Engineering, 2015,78: 272-290.
[10]EBRAHIMI F, SALARI E.Nonlocal thermo-mechanical vibration analysis of functionally graded nanobeams in thermal environment[J].Acta Astronautica, 2015, 113: 29-50.
[11]EBRAHIMI F, SALARI E.Thermal buckling and free vibration analysis of size dependent Timoshenko FG nanobeams in thermal environments[J].Composite Structures, 2015,128: 363-380.
[12]EBRAHIMI F, BARATI M B.Small scale effects on hygro-thermo-mechanical vibration of temperature dependent nonhomogeneous nanoscale beams[J].Mechanics of Advanced Materials and Structures, 2017,24(11): 924-936.
[13]HOSSEINI S A H, RAHMANI O.Thermomechanical vibration of curved functionally graded nanobeam based on nonlocal elasticity[J].Journal of Thermal Stresses, 2016,39(10): 1252-1267.
[14]NEJAD M Z, HADI A, RASTGOO A.Buckling analysis of arbitrary two-directional functionally graded Euler-Bernoulli nano-beams based on nonlocal elasticity theory[J].International Journal of Engineering Science, 2016,103: 1-10.
[15]ANSARI R, OSKOUIE M F, GHOLAMI R, et al.Thermo-electro-mechanical vibration of postbuckled piezoelectric Timoshenko nanobeams based on the nonlocal elasticity theory[J].Composites Part B: Engineering, 2016, 89: 316-327.
[16]EBRAHIMI F, BARATI M B.Porosity-dependent vibration analysis of piezo-magnetically actuated heterogeneous nanobeams[J].Mechanical Systems and Signal Processing, 2017,93: 445-459.
[17]蒲育, 周凤玺.湿-热-机-弹耦合FGM梁的稳定性及振动特性[J].工程力学, 2019,36(9): 32-39.
PU Yu, ZHOU Fengxi.Stability and vibration behavior of FGM beams under hygro-thermal-mechanical-elastic loads[J].Engineering Mechanics, 2019,36(9): 32-39.
[18]蒲育, 滕兆春.基于一阶剪切变形理论FGM梁自由振动的改进型GDQ法求解[J].振动与冲击, 2018,37(16): 212-218.
PU Yu, TENG Zhaochun.Free vibration of FGM beams based on the first-order shear deformation theory by a modified generalized differential quadrature method[J].Journal of Vibration and Shock, 2018,37(16): 212-218.
[19]蒲育, 周凤玺.基于n阶GBT初始轴向载荷影响下FGM梁的振动特性[J].振动与冲击, 2020,39(2): 104-110.
PU Yu, ZHOU Fengxi.Vibration characteristics of FGM beams under the action of initial axial load based on a n-th generalized shear beam theory[J].Journal of Vibration and Shock, 2020,39(2): 104-110.
[20]TRINH L C, VO T P, THAI H T, et al.An analytical method for the vibration and buckling of functionally graded beams under mechanical and thermal loads[J].Composites Part B: Engineering, 2016,100: 152-163.

PDF(1349 KB)

Accesses

Citation

Detail

段落导航
相关文章

/