[1]ERINGEN A C.Nonlocal continuum field theories[M].New York: Springer, 2002.
[2]滕兆春, 刘露, 衡亚洲.弹性地基上受压矩形纳米板的自由振动与屈曲特性[J].振动与冲击, 2019,38(16): 208-216.
TENG Zhaochun, LIU Lu, HENG Yazhou.Free vibration and buckling characteristics of compressed nanoplates resting on elastic foundation[J].Journal of Vibration and Shock, 2019,38(16): 208-216.
[3]THAI H T.A nonlocal beam theory for bending, buckling, and vibration of nanobeams[J].International Journal of Engineering Science, 2012,52: 56-64.
[4]KE L L, WANG Y S.Thermoelectric-mechanical vibration of piezoelectric nanobeams based on the nonlocal theory[J].Smart Materials and Structure, 2012,21(2): 1-11.
[5]刘灿昌, 裘进浩, 季宏丽, 等.考虑非局部效应的纳米梁非线性振动[J].振动与冲击, 2013,32(4): 158-162.
LIU Canchang, QIU Jinhao, JI Hongli, et al.Non-local effect on non-linear vibration characteristics of a nano-beam[J].Journal of Vibration and Shock, 2013,32(4): 158-162.
[6]张大鹏, 雷勇军.基于非局部理论的黏弹性地基上欧拉梁自由振动特性分析[J].振动与冲击, 2017,36(1): 88-95.
ZHANG Dapeng, LEI Yongjun.Free vibration characteristics of an Euler-Bernoulli beam on a viscoelastic foundation based on nonlocal continuum theory[J].Journal of Vibration and Shock, 2017,36(1): 88-95.
[7]RAHMANI O, PEDRAM O.Analysis and modeling the size effect on vibration of functionally graded nanobeams based on nonlocal Timoshenko beam theory[J].International Journal of Engineering Science, 2014,77: 55-70.
[8]EBRAHIMI F, SALARI E.Size-dependent free flexural vibrational behavior of functionally graded nanobeams using semi-analytical differential transform method[J].Composites Part B: Engineering, 2015,79: 156-169.
[9]EBRAHIMI F, SALARI E.Thermo-mechanical vibration analysis of nonlocal temperature-dependent FG nanobeams with various boundary conditions[J].Composites Part B: Engineering, 2015,78: 272-290.
[10]EBRAHIMI F, SALARI E.Nonlocal thermo-mechanical vibration analysis of functionally graded nanobeams in thermal environment[J].Acta Astronautica, 2015, 113: 29-50.
[11]EBRAHIMI F, SALARI E.Thermal buckling and free vibration analysis of size dependent Timoshenko FG nanobeams in thermal environments[J].Composite Structures, 2015,128: 363-380.
[12]EBRAHIMI F, BARATI M B.Small scale effects on hygro-thermo-mechanical vibration of temperature dependent nonhomogeneous nanoscale beams[J].Mechanics of Advanced Materials and Structures, 2017,24(11): 924-936.
[13]HOSSEINI S A H, RAHMANI O.Thermomechanical vibration of curved functionally graded nanobeam based on nonlocal elasticity[J].Journal of Thermal Stresses, 2016,39(10): 1252-1267.
[14]NEJAD M Z, HADI A, RASTGOO A.Buckling analysis of arbitrary two-directional functionally graded Euler-Bernoulli nano-beams based on nonlocal elasticity theory[J].International Journal of Engineering Science, 2016,103: 1-10.
[15]ANSARI R, OSKOUIE M F, GHOLAMI R, et al.Thermo-electro-mechanical vibration of postbuckled piezoelectric Timoshenko nanobeams based on the nonlocal elasticity theory[J].Composites Part B: Engineering, 2016, 89: 316-327.
[16]EBRAHIMI F, BARATI M B.Porosity-dependent vibration analysis of piezo-magnetically actuated heterogeneous nanobeams[J].Mechanical Systems and Signal Processing, 2017,93: 445-459.
[17]蒲育, 周凤玺.湿-热-机-弹耦合FGM梁的稳定性及振动特性[J].工程力学, 2019,36(9): 32-39.
PU Yu, ZHOU Fengxi.Stability and vibration behavior of FGM beams under hygro-thermal-mechanical-elastic loads[J].Engineering Mechanics, 2019,36(9): 32-39.
[18]蒲育, 滕兆春.基于一阶剪切变形理论FGM梁自由振动的改进型GDQ法求解[J].振动与冲击, 2018,37(16): 212-218.
PU Yu, TENG Zhaochun.Free vibration of FGM beams based on the first-order shear deformation theory by a modified generalized differential quadrature method[J].Journal of Vibration and Shock, 2018,37(16): 212-218.
[19]蒲育, 周凤玺.基于n阶GBT初始轴向载荷影响下FGM梁的振动特性[J].振动与冲击, 2020,39(2): 104-110.
PU Yu, ZHOU Fengxi.Vibration characteristics of FGM beams under the action of initial axial load based on a n-th generalized shear beam theory[J].Journal of Vibration and Shock, 2020,39(2): 104-110.
[20]TRINH L C, VO T P, THAI H T, et al.An analytical method for the vibration and buckling of functionally graded beams under mechanical and thermal loads[J].Composites Part B: Engineering, 2016,100: 152-163.