桥梁吊杆典型风致振动幅值响应质量阻尼效应研究

周帅,罗桂军,牛华伟,陈政清

振动与冲击 ›› 2021, Vol. 40 ›› Issue (18) : 63-69.

PDF(1878 KB)
PDF(1878 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (18) : 63-69.
论文

桥梁吊杆典型风致振动幅值响应质量阻尼效应研究

  • 周帅1,2,罗桂军2,牛华伟1,陈政清1
作者信息 +

Mass damping effects for typical wind-induced vibration amplitude responses of bridge hangers

  • ZHOU Shuai1,2,LUO Guijun2,NIU Huawei1,CHEN Zhengqing1
Author information +
文章历史 +

摘要

涡激共振与准定常驰振临界风速相近时,矩形杆件易发一种涡振与驰振耦合风致振动,区别于锁定区间涡振和发散性驰振,是一类响应幅值随风速的增加而线性增长的“软驰振”现象,质量、阻尼是影响耦合程度和估算幅值的关键参数。基于一组宽高比1.2∶1矩形截面杆件节段模型,通过调整模型系统等效刚度、等效质量和阻尼比,实现了Reynolds数一致情况下,相同质量不同阻尼比、相同阻尼比不同质量以及相同Scruton数不同质量、阻尼组合下风振响应对比试验研究。研究表明:耦合状态下,组成Scruton数的质量、阻尼参数对“软驰振”幅值响应的影响是独立的,权重相同;存在影响“软驰振”幅值响应Scruton数“锁定区间(12.4~30.6)”,“锁定区间”内,无量纲风速-幅值响应曲线线性斜率(Slope)不随Scruton数变化而变化,并存在一个使风致振动由耦合状态转变为非耦合状态的Scruton数“过渡区间(26.8~30.6)”;修正了“软驰振”响应幅值估算经验公式,可用于类似工程杆件设计风速范围内的幅值预测。

Abstract

When the critical wind speed for the vortex induced resonance is close to that for the  quasi steady galloping, a kind of coupled wind-induced vibration is easy to occur on a rectangular bar, which is different from the conventional vortex-induced vibration and divergent galloping.It is a kind of “soft galloping” phenomenon that the response amplitude increases linearly with the increase of wind speed.The mass and damping are the key parameters that affect the coupling degree and the amplitude response estimation.Based on a set of models with 1.2 width-height-ratio rectangular section member, by adjusting the equivalent stiffness, the equivalent mass and the damping of the model system, contrast experiments on the wind-induced vibration responses were carried out in the following cases: the same mass with different damping , the same damping with different mass and the same Scruton number with different mass and damping combination under the condition of uniform Reynolds number.The results show that in the coupling state, the influences of mass and damping parameters on the amplitude responses of “soft galloping” are independent and the weights are the same; for the “soft galloping” amplitude response, there is a Scruton number “locked interval (12.4-30.6)”.In the “locked interval”, the linear slope of the dimensionless wind speed amplitude response curve does not change with the Scruton number.Moreover, a “transition interval (26.8-30.6)” for the Scruton number coexists, where the coupled wind-induced vibration state is transferred to uncoupled state; the empirical formula for “soft galloping” response amplitude estimation is modified, which can be used to predict the amplitude within the designed wind speed range of similar engineering members.

关键词

涡激共振 / 驰振 / 耦合振动 / Scruton数 / 幅值估算

Key words

vortex induced resonance / galloping / coupled vibration / Scruton number / amplitude estimation

引用本文

导出引用
周帅,罗桂军,牛华伟,陈政清. 桥梁吊杆典型风致振动幅值响应质量阻尼效应研究[J]. 振动与冲击, 2021, 40(18): 63-69
ZHOU Shuai,LUO Guijun,NIU Huawei,CHEN Zhengqing. Mass damping effects for typical wind-induced vibration amplitude responses of bridge hangers[J]. Journal of Vibration and Shock, 2021, 40(18): 63-69

参考文献

[1]PARKINSON G V,BROOKS N P H.On the aeroelastic instability of bluff cylinders[J].Journal of Applied Mechanics, 1961,28(2): 252-258.
[2]PARKINSON G V, WAWZONEK M A.Some consideration of combined effects of galloping and vortex resonance[J].Journal of Wind Engineering and Industrial Aerodynamics, 1981,8(1/2): 135-143.
[3]GARRETT J L.Flow-induced vibration of elastically supported rectangular cylinders[D].Ames: Iowa State University, 2003.
[4]ZHU L D, MENG X L, DU L Q, et al.A simplified nonlinear model of vertical vortex-induced force on box decks for predicting stable amplitudes of vortex-induced vibrations[J].Engineering, 2017,3(6): 854-862.
[5]周帅,张志田,陈政清,等.大长细比钝体构件涡激共振与驰振的耦合研究[J].工程力学,2012,29(1): 176-186.
ZHOU Shuai, ZHANG Zhitian, CHEN Zhengqing, et al.Research on coupling of the vortex-excited resonance and galloping of the bluff body with large slenderness ratio[J].Engineering Mechanics, 2012,29(1): 176-186.
[6]NIU H W, ZHOU S, CHEN Z Q, et al.An empirical model for amplitude prediction on VIV-galloping instability of rectangular cylinders[J].Wind and Structures, 2015,21(1): 85-103.
[7]Euro code 1:actions on structures-General actions-Part 1-4[S].Brussels: [s.n.], 2010.
[8]HANSEN S O.Wind loading design codes[C]//Proceedings of the Sixth European and African Conference on Wind Engineering.Cambridge: EACWE, 2013.
[9]MANNINI C, MARRA A M, BARTOLI G.VIV-galloping instability of rectangular cylinders: review and new experiments[J].Journal of Wind Engineering and Industrial Aerodynamics, 2014,132: 109-124.
[10]MANNINI C, MARRA A M, MASSAI T, et al.VIV and galloping interaction for a 3∶2 rectangular cylinder[C]//Proceedings of the Sixth European and African Conference on Wind Engineering.Cambridge: EACWE, 2013.
[11]MANNINI C, MARRA A M, MASSAI T, et al.Interference of vortex-induced vibration and transverse galloping for a rectangular cylinder[J].Journal of Fluids and Structures, 2016,66: 403-423.
[12]MANNINI C, MASSAI T, MARRA A M.Modeling the interference of vortex-induced vibration and galloping for a slender rectangular prism[J].Journal of Sound and Vibration, 2018,419: 493-509.
[13]SARPKAYA T.Fluid forces on oscillating cylinders[J].Journal of Waterway Port Coastal and Ocean Engineering, 1978,104: 275-290.
[14]SARPKAYA T.Vortex-induced oscillations[J].Journal of Applied Mechanics, 1979,46: 241-258.
[15]SARPKAYA T.Hydrodynamic damping, flow-induced oscillations, and bi-harmonic response[J].Journal of Offshore and Arctic Engineering, 1995,117: 232-238.
[16]GOVARDHAN R N, WILLIAMSON C H K.Defining the ‘modified griffin plot’ in vortex-induced vibration: revealing the effect of Reynolds number using controlled damping[J].Journal of Fluid Mechanics, 2006,561: 147-180.
[17]TAMURA Y, MATSUI G.Wake-oscillator model of vortex-induced oscillation of circular cylinder[C]// Proceedings of the 5th International Conference on Wind Engineering.Fort Collins: ICWE, 1979.
[18]TAMURA Y.Mathematical model for vortex-induced oscillations of continuous systems with circular cross section[J].Journal of Wind Engineering and Industrial Aerodynamics, 1983,14(1/2/3): 431-442.
[19]TAMURA Y, SHIMADA K.A mathematical model for the transverse oscillations of square cylinders[C]//Proceedings of the First International Conference on Flow Induced Vibrations.Bowness on Windermere: ICFIV, 1987.

PDF(1878 KB)

Accesses

Citation

Detail

段落导航
相关文章

/