基于相位调制的平稳非高斯桥面不平顺随机激励的模拟

陈水生,赵辉,李锦华,夏钰桓

振动与冲击 ›› 2021, Vol. 40 ›› Issue (18) : 70-79.

PDF(2519 KB)
PDF(2519 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (18) : 70-79.
论文

基于相位调制的平稳非高斯桥面不平顺随机激励的模拟

  • 陈水生1,赵辉1,2,李锦华1,夏钰桓2
作者信息 +

Simulation of random excitation of non-Gaussian bridge deck irregularity based on phase modulation

  • CHEN Shuisheng1,ZHAO Hui1,2,LI Jinhua1,XIA Yuhuan2
Author information +
文章历史 +

摘要

在逆傅里叶变换法生成平稳高斯桥面不平顺随机激励的基础上,建立随机激励过程相位角与高阶中心矩之间的关系,通过不断调整相位角大小来改变桥面不平顺的非高斯特征,多次迭代生成给定功率谱密度、偏斜度和峭度的平稳非高斯桥面不平顺随机激励;同时,根据现场实测的桥面不平度数据,采用相位调制法重构桥面不平顺随机过程。数值算例和实测桥面不平顺的重构结果表明,该研究基于相位调制生成的平稳非高斯桥面不平顺能够满足给定目标功率谱密度、峭度和偏斜度的要求且模拟精度较高。桥面不平顺的幅值分布区域和幅值最大值随着峭度的增大而增大;偏斜度越大,桥面不平顺正偏或负偏的幅值分布区域就越大。工程应用结果表明,超高斯桥面不平顺激励的车桥振动响应最大,高斯桥面不平顺次之,亚高斯桥面不平顺激励的车桥振动响应相对较小;车辆振动对非高斯桥面不平顺激励的敏感程度大于桥梁振动。

Abstract

On the basis of generating the stationary Gaussian bridge deck irregularity by the inverse fourier transform method, the relationship between the phase angle and the high-order central moment of the random excitation process was established, and then the non-Gaussian characteristics of the bridge deck irregularity were changed by continuously adjusting the phase angle, the random excitation of non-Gaussian bridge deck irregularity with given power spectral density, skewness and kurtosis was generated by iteration.At the same time, based on the measured data of deck roughness, the stochastic process of deck roughness was reconstructed by phase modulation method.Numerical examples and reconstruction results of measured bridge deck irregularities show that the non-Gaussian bridge deck irregularities generated by phase modulation can meet the requirements of given target power spectral density, kurtosis and skewness, and the simulation accuracy is high.The area of amplitude distribution and the maximum value of amplitude increase with the increase of kurtosis, and the amplitude distribution area of the positive or negative deviation of the deck irregularity increases with the increase of the skewness.The engineering application results show that the vehicle-bridge vibration response excited by super-Gaussian bridge deck irregularity is the largest, followed by Gaussian bridge deck irregularity, and the vehicle-bridge vibration response excited by sub-Gaussian bridge deck irregularity is relatively small.The sensitivity of vehicle vibration to non-Gaussian bridge deck irregularity excitation is greater than that of bridge vibration.

关键词

平稳非高斯 / 桥面不平顺 / 相位调制 / 车桥耦合

Key words

stationary non-Gaussian / bridge deck roughness / phase modulation / vehicle-bridge coupling

引用本文

导出引用
陈水生,赵辉,李锦华,夏钰桓. 基于相位调制的平稳非高斯桥面不平顺随机激励的模拟[J]. 振动与冲击, 2021, 40(18): 70-79
CHEN Shuisheng,ZHAO Hui,LI Jinhua,XIA Yuhuan. Simulation of random excitation of non-Gaussian bridge deck irregularity based on phase modulation[J]. Journal of Vibration and Shock, 2021, 40(18): 70-79

参考文献

[1]安里鹏,李德建,胡立华,等.高速公路大跨度连续梁桥车桥耦合动力响应与参数影响分析[J].应用力学学报, 2015,32(6): 942-949.
AN Lipeng, LI Dejian, HU Lihua, et al.Vehicle-bridge coupled dynamic response and parameter influence analysis on highway large span continuous girder bridge[J].Chinese Journal of Applied Mechanics, 2015,32(6): 942-949.
[2]LOPRENCIPE G, ZOCCALI P.Use of generated artificial road profiles in road roughness evaluation[J].Journal of Modern Transportation, 2017,25(1): 24-33.
[3]李文杰,赵君黎.发展中的中国桥梁:张喜刚谈中国桥梁的现状与展望[J].中国公路, 2018(13): 64-68.
LI Wenjie, ZHAO Junli.Zhang Xigang on the present situation and prospect of bridges in China[J].China Highway, 2018(13): 64-68.
[4]WANG W, DENG L.Impact factors for fatigue design of steel I-girder bridges considering the deterioration of road surface condition[J].Journal of Bridge Engineering, 2016,21(5): 04016011.
[5]DENG L, WANG W, CAI C S.Effect of pavement maintenance cycle on the fatigue reliability of simply-supported steel I-girder bridges under dynamic vehicle loading[J].Engineering Structures, 2017,133: 124-132.
[6]OLIVA J, GOICOLEA J M, ANTOLIN P, et al.Relevance of a complete road surface description in vehicle-bridge interaction dynamics[J].Engineering Structures, 2013,56: 466-476.
[7]ZHOU G P, LI A Q, LI J H, et al.Test and numerical investigations on static and dynamic characteristics of extra-wide concrete self-anchored suspension bridge under vehicle loads[J].Journal of Central South University of Technology, 2017,24(10): 2382-2395.
[8]ZHONG H, YANG M J.Dynamic effect of foundation settlement on bridge-vehicle interaction[J].Engineering Structures, 2017,135: 149-160.
[9]MA L, ZHANG W, HAN W S, et al.Determining the dynamic amplification factor of multi-span continuous box girder bridges in highways using vehicle-bridge interaction analyses[J].Engineering Structures, 2019,181: 47-59.
[10]JIN Y F, LUO X.Stochastic optimal active control of a half-car nonlinear suspension under random road excitation[J].Nonlinear Dynamics, 2013,72(1/2): 185-195.
[11]SMALLWOOD D O.Vibration with non-Gaussian noise[J].Journal of the Institute of Environmental Sciences and Technology, 2009,52(3): 13-20.
[12]YANG Q S, TIAN Y J.A model of probability density function of non-Gaussian wind pressure with multiple samples[J].Journal of Wind Engineering and  Industrial Aerodynamics, 2015,140: 67-78.
[13]HU J, OU J P.Dynamic reliability of the buffeting responses of suspension bridges considering non-Gaussian factors[J].Journal of Highway and Transportation Research and Development, 2013,7(4): 39-43.
[14]DAE K K, KAREEM A.Peak factors for non-Gaussian load effects revisited[J].Journal of Structural Engineering, 2011,137(12): 1611-1619.
[15]YANG L P, GURLEY K R.Efficient stationary multivariate non-Gaussian simulation based on a Hermite PDF model[J].Probabilistic Engineering Mechanics, 2015,42: 31-41.
[16]LUO J J, SU C, HAN D J.A simulation methodology of the stationary non-Gaussian stochastic wind pressure field[J].Probabilistic Engineering Mechanics, 2012,30: 77-88.
[17]SHIELDS M D, DEODATIS G.A simple and efficient methodology to approximate a general non-Gaussian stationary stochastic vector process by a translation process with applications in wind velocity simulation[J].Probabilistic Engineering Mechanics, 2013,31: 19-29.
[18]GRIGORIU M.Spectral representation for a class of non-Gaussian processes[J].Journal of Engineering Mechanics, 2004,130(5): 541-546.
[19]SMALLWOOD D O.Generation of stationary non-Gaussian time histories with a specified cross-spectral density[J].Shock and Vibration, 1997,4(5/6): 361-377.
[20]孙涛,徐桂红,柴陵江.四轮非平稳随机激励路面模型的研究[J].汽车工程, 2013,35(10): 868-872.
SUN Tao, XU Guihong, CHAI Lingjiang.A study on the road model with four-wheel non-stationary random excitations[J].Automotive Engineering, 2013,35(10): 868-872.

PDF(2519 KB)

Accesses

Citation

Detail

段落导航
相关文章

/