蜂窝形抗冲击MEMS止挡结构的抗冲击仿真与试验研究

凤瑞,王炅,喻磊,郑宇,向圆,乔伟,王甫

振动与冲击 ›› 2021, Vol. 40 ›› Issue (18) : 80-85.

PDF(1273 KB)
PDF(1273 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (18) : 80-85.
论文

蜂窝形抗冲击MEMS止挡结构的抗冲击仿真与试验研究

  • 凤瑞1,2,王炅2,喻磊1,郑宇1,向圆1,乔伟1,王甫1
作者信息 +

Simulation and experimental study on the impact resistance of honeycomb anti-shock MEMS stop structures

  • FENG Rui1,2,WANG Jiong2,YU Lei1,ZHENG Yu1,XIANG Yuan1,QIAO Wei1,WANG Fu1
Author information +
文章历史 +

摘要

为了提高微机电系统(MEMS)器件的抗冲击能力,提出了一种蜂窝形MEMS止挡结构。设计了由两层不同孔径的蜂窝孔构成的蜂窝形MEMS止挡结构,并分析建立了简化数学模型,说明了通过改变蜂窝孔径可以实现止挡结构刚度的调节。基于典型的中间质量块的双端固支梁微结构,设计了相应的蜂窝形止挡测试结构,并在ANSYS仿真软件中进行了冲击仿真计算。采用机械冲击台和霍普金森杆对实际加工出的测试结构进行了冲击验证试验。试验结果表明:设计有蜂窝形止挡结构的中间质量块的双端固支梁MEMS结构可以承受至少3.2 万g冲击。采用蜂窝形止挡设计,避免了弹性梁式止挡结构的应力集中问题,提高了MEMS结构的抗冲击能力。

Abstract

In order to improve the shock resistance of MEMS devices, a honeycomb micro-electro-mechanical system(MEMS) stop structure was proposed, which has two layers of honeycomb holes with different apertures.A simplified mathematical model was established.It was shown that the elastic stiffness of the stop structure could be adjusted by changing the honeycomb apertures.A honeycomb MEMS stop structure based on a typical double-end fixed beam microstructure attached with an intermediate mass was designed.The shock simulation was developed by using ANSYS software.The mechanical impact table and Hopkinson bar were used to perform shock verification experiments on the fabricated structure.The experimental results indicate that the test structure with the honeycomb stop can withstand at least 32 000g impact.Compared with the elastic beam stop structure, the honeycomb stop avoids stress concentration and improves the impact resistance of the MEMS structure.

关键词

蜂窝形 / 冲击 / 微机电系统(MEMS) / 止挡结构

Key words

honeycomb / shock / micro-electro-mechanical system(MEMS) / stop structure

引用本文

导出引用
凤瑞,王炅,喻磊,郑宇,向圆,乔伟,王甫. 蜂窝形抗冲击MEMS止挡结构的抗冲击仿真与试验研究[J]. 振动与冲击, 2021, 40(18): 80-85
FENG Rui,WANG Jiong,YU Lei,ZHENG Yu,XIANG Yuan,QIAO Wei,WANG Fu. Simulation and experimental study on the impact resistance of honeycomb anti-shock MEMS stop structures[J]. Journal of Vibration and Shock, 2021, 40(18): 80-85

参考文献

[1]BROWN T G.Harsh military environments and microelectromechanical devices[C]//Proceedings of IEEE Sensors 2003.Toronto: IEEE, 2003.
[2]PERLMUTTER M, ROBIN L.High-performance, low cost inertial MEMS: a market in motion![C]//Proceedings of the 2012 IEEE/ION Position, Location and Navigation Symposium.Myrtle Beach: IEEE, 2012.
[3]DAVID B H, VU A H, YANG Y, et al.High-G (>20000g) inertial shock survivability of epitaxially encapsulated siliocn MEMS devices [C]//2017 IEEE 30th International Conference on Micro Electro Mechanical Systems(MEMS).Las Vegas: IEEE, 2017.
[4]石云波, 李平, 朱正强, 等.MEMS高g加速度传感器高过载能力的优化研究[J].振动与冲击, 2011,30(7): 271-274.
SHI Yunbo, LI Ping, ZHU Zhengqiang, et al.High overload ability optimization of a MEMS high-g accelerometer[J].Journal of Vibration and Shock, 2011,30(7): 271-274.
[5]石云波, 周智君, 唐军.MEMS高量程压阻加速度计侵彻双层钢靶性能测试[J].振动与冲击, 2015,34(6): 168-171.
SHI Yunbo, ZHOU Zhijun, TANG Jun.Performance measuring of a double-layer steel target penetrated by projectiles with a MEMS system based on a high measuring range accelerometer[J].Journal of Vibration and Shock, 2015,34(6): 168-171.
[6]DIXON R H, BOUCHAUD J.Markets and applications for MEMS inertial sensors [C]//MEMS/MOEMS Components and Their Applications III.San Jose: [s.n.], 2006.
[7]SRIKAR V T, STEPHEN D S.The reliability of microelectromechanical system in shock environments[J].Journal of Microelectromechanical System, 2002,11(3): 206-214.
[8]ARAB A, FENG Q.Reliability research on micro-and nano-electromechanical system: a review[J].The International Journal of Advanced Manufacturing Technology, 2014(74): 1679-1690.
[9]HUANG Y, VASAN A S S, DORAISWAMI R, et al.MEMS reliability review[J].IEEE Transcation on Device and Material Reliability, 2012,12(2): 482-493.
[10]ALDO G, STANISLAW K, STEFANO M, et al.Polysilicon MEMS accelerometers exposed to shocks: numerical-experimental investigation[J].Journal of Micromechanicas and Microengieering, 2009,19(3): 035023.
[11]SANG W Y.Vibration isolation and shock protection for MEMS[D].Ann Arbor: University of Michigan, 2009.
[12]HERMANN J.Micromachined measuring cell with arm supported sensor: US 5551294[P].1996-09-03.
[13]姜涛, 马宁, 倪雷.超高加速度冲击下微弹性梁限位块参数设计[J].微纳电子技术, 2019,56(4): 290-295.
JIANG Tao, MA Ning, NI Lei.Stopper parameters design of the micro-elastic beam under ultra-high-g shock[J].Micronanoelectronic Technology, 2019,56(4): 290-295.
[14]TAO Y K, LIU Y F, DONG J X.Flexible stop and double-cascaded stop to improve shock reliability[J].Microelectronics Reliability, 2014,54(6/7): 1328-1337.
[15]HARTZELL A L, DA SILVA M G, SHEA H R.MEMS reliability[M].New York: Springer, 2011.
[16]凤瑞.一种蜂窝状微止挡结构: CN201811356582.1[P].2019-01-11.
[17]HOPCROFT M A, NIX W D, KENNY T W.What is the young’s modulus of silicon?[J].Journal of Microelectromechanical System, 2010,19(2): 229-238.

PDF(1273 KB)

Accesses

Citation

Detail

段落导航
相关文章

/