为了得到南中环桥的基准有限元模型,结合Kriging模型和改进的万有引力搜索算法(GSA),利用荷载试验数据对初始有限元模型进行修正。叙述Kriging模型和万有引力搜索算法的基本原理,引入随机交叉变异的方法到基本万有引力算法中,提出了一种改进优化算法,并通过测试函数对其进行验证;介绍南中环桥的工程概况、荷载试验内容和初始有限元模型;接着选定6个待修正参数,通过试验设计得到修正参数所对应的频率和位移的样本,并建立Kriging模型来预测结构响应;以频率和位移的试验值和计算值残差为目标函数,分别利用改进的GSA、粒子群优化算法(PSO)和GSA算法在修正参数的设计空间内寻找目标函数的最小值,对比分析修正结果。结果表明:改进算法对于测试函数具有较好的稳定性和更高的精度;经过模型修正,除个别测点外,频率、位移的相对误差显著降低;相比PSO和GSA,改进的GSA得到了更小的目标函数值,修正后的频率、位移相对误差更小。
Abstract
Here, to obtain the benchmark finite element model of Nanzhonghuan bridge, Kriging model and the improved gravitational search algorithm (GSA) were combined to modify the initial finite element model using load test data. Firstly, the basic principles of Kriging model and GSA were described. The random crossover mutation method was introduced into the basic GSA to propose the improved GSA, it was verified with the testing function. Then, Nanzhonghuan bridge’s project brief situation, load test content and its initial finite element model were introduced. Furthermore, 6 parameters to be modified were selected, frequency and displacement samples corresponding to parameters to be modified were obtained through test design, and Kriging model was established to predict the structure’s responses. Finally, taking the residual of test value and calculated value of frequency and displacement as the objective function, the improved GSA, particle swarm optimization (PSO) and GSA algorithms were used, respectively to search the minimum value of the objective function in the design space of parameters to be modified and the modified results were contrastively analyzed. The results showed that the improved GSA has better stability and higher accuracy for the testing function; through model updating, relative errors of frequency and displacement are significantly reduced except for few measured points; compared with PSO and GSA, the improved GSA can get smaller objective function value, relative errors of frequency and displacement after model updating are smaller.
关键词
桥梁工程 /
模型修正 /
Kriging模型 /
钢混叠合梁拱桥 /
改进万有引力搜索算法 (GSA)
{{custom_keyword}} /
Key words
bridge engineering /
model updating /
Kriging model /
steel-concrete composite beam arch bridge /
improved gravitational search algorithm (GSA)
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]方志,张国刚,唐盛华,等.混凝土斜拉桥动力有限元建模与模型修正[J].中国公路学报,2013,26(3):77-85.
FANG Zhi, ZHANG Guogang, TANG Shenghua, et al.Finite element modeling and model updating of concrete cable-stayed bridge[J].China Journal of Highway and Transport,2013,26(3):77-85.
[2]MOTTERSHEAD J E, MICHAEL L, FRISWELL M I. The sensitivity method in finite element model updating: a tutorial[J]. Mechanical Systems and Signal Processing,2011,25(7):2275-2296.
[3]FAISAL S, PIOTR O. Particle swarm optimization with sequential niche technique for dynamic finite element model updating[J]. Computer-Aided Civil and Infrastructure Engineering,2015,30:359-375.
[4]韩万水,刘修平,邓露,等.基于实数编码遗传算法的桥梁有限元模型修正方法[J].交通运输工程学报,2019,19(2):14-24.
HAN Wanshui,LIU Xiuping,DENG Lu,et al. Updating method of bridge finite element model based on real coded genetic algorithm[J]. Journal of Traffic and Transportation Engineering,2019,19(2):14-24.
[5]伊廷华,张旭东,李宏男.基于小生境猴群算法的传感器优化布置方法研究[J].工程力学,2014,31(9):112-119.
YI Tinghua, ZHANG Xudong, LI Hongnan.The niching monkey algorithm for optimal sensor placement[J]. Engineering Mechanics,2014,31(9):112-119.
[6]毕晓君,刁鹏飞,王艳娇.求解动态优化问题的改进多种群引力搜索算法[J].中南大学学报(自然科学版),2015,46(9):3325-3331.
BI Xiaojun, DIAO Pengfei,WANG Yanjiao. Improved multi-population gravitational search algorithm for dynamic optimization problems[J]. Journal of Central South University (Science and Technology), 2015,46(9):3325-3331.
[7]ALKAYEM N F,CAO M,ZHANG Y F,et al. Structural damage detection using finite element model updating with evolutionary algorithms: a survey[J]. Neural Computing and Applications,2018,30(2): 389-411.
[8]RASHEDI E, NEZAMABADI-POUR H,SARYAZDI S. GSA: a gravitational search algorithm[J]. Information Sciences,2009,179(13):2232-2248.
[9]苗晓燕.基于启发式算法边坡及支挡结构稳定性分析方法[D].长沙:湖南大学,2017.
[10]谷文祥,李向涛,朱磊,等.求解流水线调度问题的万有引力搜索算法[J].智能系统学报,2010,5(5):411-418.
GU Wenxiang,LI Xiangtao,ZHU Lei,et al. A gravitational search algorithm for flow shop scheduling[J]. CAAI Transactions on Intelligent Systems,2010,5(5):411-418.
[11]李超顺,周建中,肖剑. 基于改进引力搜索算法的励磁控制PID参数优化[J].华中科技大学学报(自然科学版),2012,40(10):119-121.
LI Chaoshun,ZHOU Jianzhong,XIAO Jian. PID parameter optimization of excitation control systems by using improved gravitational search algorithm[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition),2012,40(10):119-121.
[12]李沛,段海滨.基于改进万有引力搜索算法的无人机航路规划[J].中国科学:技术科学,2012,42(10):1130-1136.
LI Pei,DUAN Haibin. Route planning of UAV based on improved gravitation search algorithm[J]. Scientia Sinica Technologica,2012,42(10):1130-1136.
[13]蒋建国,谭雅,董立明.改进的万有引力搜索算法在边坡稳定分析中的应用[J]. 岩土工程学报,2015,38(3):419-426.
JIANG Jianguo,TAN Ya,DONG Liming. Application of modified gravitational search algorithm in slope stability analysis[J].Chinese Journal of Geotechnical Engineering,2015,38(3):419-426.
[14]代汉超,石雪飞,阮欣.基于改进响应面的桥梁抗弯刚度修正[J].中南大学学报(自然科学版),2014,45(7):2387-2393.
DAI Hanchao, SHI Xuefei, RUAN Xin. Bending stiffness updating of bridge structures based on improved response-surface method[J]. Journal of Central South University (Science and Technology),2014,45(7):2387-2393.
[15]胡常福,任伟新,刘旭政.基于紧支径向基响应面的承载力不确定性分析[J].中南大学学报(自然科学版),2014,45(10):3621-3628.
HU Changfu,REN Weixin,LIU Xuzheng. Analysis of ultimate load-carrying capacity uncertainty based on response surface method with compactly supported radial basis functions[J]. Journal of Central South University (Science and Technology),2014,45(10):3621-3628.
[16]QIN S Q, ZHOU Y L, CAO H Y. Model updating in complex bridge structures using kriging model ensemble with genetic algorithm[J]. KSCE Journal of Civil Engineering,2018,22(9):3567-3578.
[17]胡俊亮,颜全胜,郑恒斌,等. 基于Kriging模型的钢管混凝土连续梁拱桥有限元模型修正[J].振动与冲击,2014,33(14):33-39.
HU Junliang,YAN Quansheng,ZHENG Hengbin, et al. CFST arch/continuous beam bridge FEM model updating based on Kriging model[J]. Journal of Vibration and Shock, 2014,33(14):33-39.
[18]茆诗松.实验设计与分析[M].北京:中国统计出版社,1997.
[19]MARI J L,GAUDIANI P,DELAY J. Characterization of geological formations by physical parameters obtained through full waveform acoustic logging[J]. Physics and Chemistry of the Earth,2011,36(17):1438-1449.
[20]KENNEDY J, EBERHART R C. Particle swarm optimization[C]∥IEEE International Conference on Neural Networks. Piscataway: ICNN, 1995.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}