一种基于相位平均的旋转声源高分辨率定位方法

初宁,黄乾,余亮,宁岳,徐建锋,吴大转

振动与冲击 ›› 2021, Vol. 40 ›› Issue (19) : 125-136.

PDF(4994 KB)
PDF(4994 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (19) : 125-136.
论文

一种基于相位平均的旋转声源高分辨率定位方法

  • 初宁1,2,黄乾1,余亮3,宁岳1,徐建锋2,吴大转1
作者信息 +

A high-resolution positioning method of rotating sound source based on phase average

  • CHU Ning1,2, HUANG Qian1, YU Liang3, NING Yue1, XU Jianfeng2, WU Dazhuan1
Author information +
文章历史 +

摘要

提出了一种基于相位平均的旋转声源高分辨率定位方法,并给出了相位平均技术所适用的条件。为解决多普勒效应导致的旋转模糊,将旋转声信号划分成足够多个时间序列切片,在每一切片内,微小位移的旋转声源可近似等效为静止声源进行定位。其优势在于,避免了去多普勒效应的插值运算,从而保留了时域波形的相位连续性。为提高定位分辨率,运用卷积模型改造基于波束形成的能量传播模型,利用解卷积算法消除定位模糊和提高定位精度。其优势在于,卷积模型中的点扩散函数(PSF)能够建立起阵列测量与声源旋转的联系,由此通过PSF来表征麦克风阵列定位性能、分析频率对定位分辨率的影响。通过仿真信号、旋转单极子试验、风扇试验验证了方法的有效性和鲁棒性。

Abstract

Here, a high-resolution localization method of rotating sound source based on phase average was proposed, and the applicable conditions of phase average technology were given. To solve rotating blur caused by Doppler effect, a rotating sound signal was divided into enough time series slices. In each slice, a rotating sound source with small displacement was approximately equivalent to a static sound source for positioning. The advantage was the interpolation calculation of de-Doppler effect being avoided and the phase continuity of time domain waveform being preserved. Furthermore, to improve the positioning resolution, the energy transmission model based on beamforming was modified with the convolution model, and the deconvolution algorithm was used to eliminate positioning ambiguity and improve positioning accuracy. The advantage was the point spread function (PSF) in convolution model being able to establish the connection between array measurement and sound source rotating. Thus, PSF was used to characterize the positioning performance of microphone array and analyze effects of frequency on positioning resolution. Finally, the effectiveness and robustness of the proposed method were verified using simulation, rotating monopole experiments and fan tests.

关键词

相位平均 / 旋转声源定位 / 多普勒效应 / 解卷积 / 点扩散函数

Key words

phase average / rotating sound source localization / Doppler effect / deconvolution / point spread function (PSF)

引用本文

导出引用
初宁,黄乾,余亮,宁岳,徐建锋,吴大转. 一种基于相位平均的旋转声源高分辨率定位方法[J]. 振动与冲击, 2021, 40(19): 125-136
CHU Ning, HUANG Qian, YU Liang, NING Yue, XU Jianfeng, WU Dazhuan. A high-resolution positioning method of rotating sound source based on phase average[J]. Journal of Vibration and Shock, 2021, 40(19): 125-136

参考文献

[1]LOWIS C R, JOSEPH P F. Determining the strength of rotating broadband sources in ducts by inverse methods[J]. Journal of Sound and Vibration, 2006, 295(3/4/5):614-632.
[2]OERLEMANS S, SIJTSMA P, MNDEZ LPEZ B. Location and quantification of noise sources on a wind turbine[J]. Journal of Sound and Vibration, 2007, 299(4/5): 869-883.
[3]SIJTSMA P, OERLEMANS S, HOLTHUSEN H. Location of rotating sources by phased array measurements[C]∥7th AIAA/CEAS Aeroacoustics Conference and Exhibit. Maastricht:ACE,2001. 
[4]王枭, 陈永艳, 高志鹰, 等. 基于DAMAS2修正算法的旋转声源定位识别方法[J]. 中国测试, 2018, 44(9):109-114.
WANG Xiao, CHEN Yongyan, GAO Zhiying, et al. Rotation sound source localization and recognition method based on DAMAS2 correction algorithm[J]. China Measurement & Testing Technology, 2018, 44(9): 109-114.
[5]ZHANG X Z, BI C X, ZHANG Y B, et al. A time-domain inverse technique for the localization and quantification of rotating sound sources[J]. Mechanical Systems and Signal Processing, 2017, 90:15-29.
[6]YU L, WU H J, ANTONI J, et al. Extraction and imaging of aerodynamically generated sound field of rotor blades in the wind tunnel test[J]. Mechanical Systems & Signal Processing, 2019, 116(1):1017-1028.
[7]RALPH K, CHRISTIAN F, MICHAEL K, et al. Investigations on noise sources on a contra-rotating axial fan with different modifications[J]. E3S Web of Conferences, 2019, 111: 02076.
[8]HEROLD G, SARRADJ E. Microphone array method for the characterization of rotating sound sources in axial fans[J]. Noise Control Engineering Journal, 2015, 63(6):546-551.
[9]BROOKS T F, HUMPHREYS W M. A deconvolution approach for the mapping of acoustic sources (DAMAS) determined from phased microphone arrays[J]. Journal of Sound and Vibration, 2006, 294 (4/5), 856-879.
[10]HGBOM J. Aperture synthesis with a non-regular distribution of interferometer baselines[J]. Astronomy and Astrophysics Supplement Series, 1974, 15: 417-426.
[11]DOUGHERTY R P. Extensions of DAMAS and benefits and limitations of deconvolution in beamforming[C]∥11th AIAA/CEAS Aeroacoustics Conference (26th AIAA Aeroacoustics Conference).Monterey:AIAA, 2005.
[12]YARDIBI T, LI J, STOICA P, et al. Sparsity constrained deconvolution approaches for acoustic source mapping[C]∥14th AIAA/CEAS Aeroacoustics Conference (29th AIAA Aeroacoustics Conference). Vancouver: AIAA, 2008. 
[13]莫品西.旋翼气动噪声的声成像理论与试验研究[D].上海:上海交通大学,2018.
[14]许丹. 基于传声器阵列的旋转声源识别方法研究[D].合肥:合肥工业大学,2017.
[15]MA W, LIU X. Improving the efficiency of DAMAS for sound source localization via wavelet compression computational grid[J]. Journal of Sound and Vibration, 2017, 395:341-353.
[16]PRIME Z, DOOLAN C, ZAJAMSEK B. Beamforming array optimisation and phase averaged sound source mapping on a model wind turbine[C]∥ INTER-NOISE and NOISE-CON Congress and Conference Proceedings. Melbourne:Institute of Noise Control Engineering,2014.
[17]BRANKO Z. Experimental investigation into airfoil self-noise,blade-tower interaction noise and wind farm noise character [D]. Sydney: The University of New South Wales, 2017.
[18]邹月娴, 肖仕杰, 赵璟, 等. 基于平均互功率相位谱时延估计定位算法和DSP硬件平台的实时声源定位技术[C]∥第六届全国信息获取与处理学术会议. 焦作:中国仪器仪表学会,2008.
[19]彭奎, 罗雅琴, 吴小培, 等. 一种实时麦克阵列声源定位系统研究与实现[J]. 工业控制计算机, 2013, 26(9):82-83.
PENG Kui,LUO Yaqin,WU Xiaopei, et al. A real-time microphone array sound source localization system research and implementation[J].Industrial Control Computer, 2013, 26(9):82-83.
[20]YU L.  Acoustical source reconstruction from non-synchronous sequential measurements[D]. Rhone-Alpes:l’Institut National des Sciences Appliquées de Lyon, 2015. 
[21]CAPON J. High-resolution frequency-wavenumber spectrum analysis[J]. Proceedings of the IEEE, 2005, 57(8):1408-1418.
[22]CHU N.   Bayesian approach in acoustic source localization and imaging[D]. Paris: Université Paris Sud-Paris XI, 2013.
[23]CHU N, NING Y, YU L, et al. A High-resolution and low-frequency acoustic beamforming based on bayesian inference and non-synchronous measurements[J]. IEEE Access, 2020(99): 1-1.
[24]张强.气动声学基础[M]. 北京:国防工业出版社,2012.

PDF(4994 KB)

504

Accesses

0

Citation

Detail

段落导航
相关文章

/