为进一步降低气囊隔振器垂向刚度,提高中高频隔振效果,同时适当减小横向刚度以衰减沿此方向的振动传递,设计提出了一种复合结构气囊隔振器(CSAS)。它在原有气囊下端串联硬弹性层形成叠层结构;开展了静态和动态试验,并分别用多项式拟合法和椭圆法计算静刚度和动刚度。试验结果表明:串联硬弹性层后气囊气压与承载之间的线性关系并没有改变;垂向动、静刚度和固有频率均小幅下降,横向动、静刚度则大幅下降。
Abstract
Here,to further reduce vertical stiffness of air spring, improve the effect of medium and high frequency vibration isolation, and appropriately reduce lateral stiffness to attenuate vibration transmission in this direction, a compound structure air spring (CSAS) was designed and proposed. A hard elastic layer was connected in series at the lower end of the original air spring to form a laminated structure. Static and dynamic tests of the isolator were conducted. Furthermore, static and dynamic stiffnesses of the isolator were calculated using the polynomial fitting method and the ellipse method, respectively. The test results showed that the linear relationship between air spring pressure and load does not change after the hard elastic layer is connected in series to the bag; the isolator’s vertical dynamic stiffness and static one as well as its natural frequency decrease slightly, while its lateral dynamic stiffness and static one drop largely.
关键词
气囊隔振器 /
复合结构 /
承载 /
刚度
{{custom_keyword}} /
Key words
air spring; compound structure /
load-bearing /
stiffness
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]楼京俊,李爽,杨庆超,等. 长方体形气囊隔振器试验方法及垂向刚度特性研究[J]. 振动与冲击,2017, 36(13): 184-188.
LOU Jingjun, LI Shuang, YANG Qingchao, et al. Test method and vertical stiffness characteristic of a rectangular airbag vibration isolator [J]. Journal of Vibration and Shock, 2017, 36(13): 184-188.
[2]HE L, XU W, BU W J, et al. Dynamic analysis and design of air spring mounting system for marine propulsion system[J]. Journal of Sound and Vibration, 2014, 333: 4912-4929.
[3]何琳,赵应龙. 舰船用高内压气囊隔振器理论与设计[J]. 振动工程学报,2013, 26(6): 886-894.
HE Lin, ZHAO Yinglong. Theory and design of high-pressure and heavy-duty air spring for naval vessels [J]. Journal of Vibration Engineering, 2013, 26(6): 886-894.
[4]龚积球. 橡胶垫与高圆簧[J]. 内燃机车,1990(10): 35-38.
GONG Jiqiu. Rubber pads and flexicoil springs [J]. Diesel Locomotives, 1990 (10): 35-38.
[5]蒋益平. 橡胶垫参数及结构形式对高圆簧加橡胶垫的横向刚度的影响[J]. 机械,2014, 41(1): 19-23.
JIANG Yiping. The affect of the rubber pad parameters and struct
ural forms to the lateral stiffness of flexicoil spring with rubber pad [J]. Machinery, 2014, 41(1): 19-23.
[6]王丽娜. 带橡胶垫的高圆簧组合系统非线性刚度研究[D]. 成都:西南交通大学,2013.
[7]许恒波,刘少义,张华. 复合式空气弹簧的开发设计[J]. 北华航天工业学院学报,2013, 23(6): 35-38.
XU Hengbo, LIU Shaoyi, ZHANG Hua. Development and design of compound air spring [J]. Journal of North China Institute of Aerospace Engineering, 2013, 23(6): 35-38.
[8]黎吉明,赵宇,谭周鹏. 复合减震橡胶空气弹簧总成的研制[J]. 橡胶工业,2007, 54(11): 679-681.
LI Jiming, ZHAO Yu, TAN Zhoupeng. Development of compound damping rubber air spring assembly [J]. China Rubber Industry, 2007, 54(11): 679-681.
[9]姜荣敏,张明,蔡佳圻. 叠层橡胶金属弹簧轴向刚度特性研究[J]. 机械设计与制造工程,2016,45(6): 87-90.
JIANG Rongmin, ZHANG Ming, CAI Jiaqi. Analysis of axial stiffness characteristics of a laminated rubber-metal spring [J]. Machine Design and Manufacturing Engineering, 2016, 45(6): 87-90.
[10]DING L, ZHU H P, WU Q Y. Seismic response and vibration transmission characteristics of laminated rubber bearings with single disorder[J]. Journal of Engineering Mechanics, 2019, 145(12): 04019093.
[11]CHANG C H. Modeling of laminated rubber bearings using an analytical stiffness matrix[J]. International Journal of Solids and Structures, 2002, 39(24): 6055-6078.
[12]杜聪如,赵应龙. 复合式气囊隔振器垂向静态特性研究[J]. 舰船科学技术,2016, 38(6): 97-100.
DU Congru, ZHAO Yinglong. Investigation on vertical static properties of a complex air spring [J]. Ship Science and Technology, 2016, 38 (6): 97-100.
[13]徐伟. 气囊减振装置技术研究[D]. 武汉:海军工程大学,2005.
[14]CHAPRA S C, CANALE R P. Numerical methods for engineers[M]. New York: McGraw-Hill Inc., 1988.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}