不同墩高铁路连续梁桥 MTC装置减震适用性研究

陈士通,许鑫祥,张茂江,李然

振动与冲击 ›› 2021, Vol. 40 ›› Issue (19) : 277-285.

PDF(2135 KB)
PDF(2135 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (19) : 277-285.
论文

不同墩高铁路连续梁桥 MTC装置减震适用性研究

  • 陈士通1,2 ,许鑫祥2, 张茂江2,李然1,3
作者信息 +

Research on aseismic applicability of MTC device of railway continuous bridge with different pier heights

  • CHEN Shitong1,2, XU Xinxiang2, ZHANG Maojiang2, LI Ran1,3
Author information +
文章历史 +

摘要

为明确不同墩高铁路连续梁桥多阶段适时控制连接(MTC)装置减震适用情况,基于其工作原理,以某(75+2×120+75)m铁路连续梁桥为分析对象,采用ANSYS软件建立4种地形下不同墩高连续梁桥有限元模型。分别开展四类场地条件下墩高变化对减震效果、梁体内力及活动墩受力影响分析,探究MTC装置减震优化措施。结果表明:四类场地条件下,不同地形连续梁桥采用MTC装置减震多数情况下均可取得理想减震效果;MTC装置发挥作用时可降低梁体轴力,小幅改变梁体受弯状态,但不会对梁体结构安全产生不利影响;对于个别高墩连续梁桥减震效果不理想情况,可采取调整MTC装置限位刚度的措施增强其减震效果;此外,可通过调整I区限位刚度占比降低活动墩地震响应。

Abstract

This paper aims to study the aseismic applicability of the multi-stage timely connection control (MTC) device of railway continuous bridge with different pier heights. Finite element models which contain 4 types of terrains of a (75+2×120+75)m continuous bridge with different pier heights were built using ANSYS. The influence of the variation of pier heights under 4 types of site on the seismic reduction, the internal force of the girder, and the force of the sliding piers were investigated and the optimization measures of the device were also suggested. Most continuous bridge with MTC devices under different terrains and site types have good aseismic effect. The axial force of the girder can be reduced when the MTC works. Though the bending state is changed, the structural safety of the girder is not affected. For those continuous bridges with higher piers whose aseismic effect is poor, measures that adjust the limit stiffness of the MTC can be taken to enhance the aseismic effect. Moreover, the seismic response of the sliding piers can be reduced by adjusting the proportion of the limit stiffness in zone I.

关键词

铁路连续梁桥 / MTC装置 / 地震响应 / 桥墩高度 / 减震效果

Key words

railway continuous bridge / multi-stage timely control connection(MTC) device / seismic response / pier height / aseismic effect

引用本文

导出引用
陈士通,许鑫祥,张茂江,李然. 不同墩高铁路连续梁桥 MTC装置减震适用性研究[J]. 振动与冲击, 2021, 40(19): 277-285
CHEN Shitong, XU Xinxiang, ZHANG Maojiang, LI Ran. Research on aseismic applicability of MTC device of railway continuous bridge with different pier heights[J]. Journal of Vibration and Shock, 2021, 40(19): 277-285

参考文献

[1]汤虎, 李建中. 连续梁桥固定墩减震设计方法研究[J]. 土木工程学报, 2011, 44(12): 64-72.
TANG Hu, LI Jianzhong. Study of earthquake-reduction design for the fixed pier of continuous bridges[J]. China Civil Engineering Journal, 2011, 44(12): 64-72.
[2]JIANG L Z, KANG X, LI C Q, et al. Earthquake response of continuous girder bridge for high-speed railway: a shaking table test study[J]. Engineering Structures, 2019, 180: 249-263.
[3]李承根, 高日. 高速铁路桥梁减震技术研究[J]. 中国工程科学, 2009, 11(1):81-86.
LI Chenggen, GAO Ri. Study on the shock absorbing technique of high speed railway bridges[J]. Strategic Study of CAE, 2009, 11(1): 81-86.
[4]刘正楠, 陈兴冲, 张永亮, 等. 考虑行波效应的无砟轨道铁路桥梁纵桥向地震响应[J]. 振动与冲击, 2020, 39(4): 142-149.
LIU Zhengnan, CHEN Xingchong, ZHANG Yongliang, et al. Longitudinal seismic response of ballastless railway bridges considering traveling wave effect[J]. Journal of Vibration and Shock, 2020, 39(4): 142-149.
[5]石岩, 王东升, 孙治国. 近断层地震动下减隔震桥梁地震反应分析[J]. 桥梁建设, 2014, 44(3): 19-24.
SHI Yan, WANG Dongsheng, SUN Zhiguo. Analysis of seismic response of seismically mitigated and isolated bridge subjected to near-fault ground motion[J]. Bridge Struction, 2014, 44(3): 19-24.
[6]刘正楠, 陈兴冲, 张永亮, 等. 近远场地震作用下基于摩擦摆支座的高速铁路连续梁桥减隔震研究[J]. 中国铁道科学, 2019, 40(1): 47-54.
LIU Zhengnan, CHEN Xingchong, ZHANG Yongliang, et al. Research on seismic mitigation and isolation of continuous beam bridge for high speed railway based on friction pendulum bearing under near-and-far field ground motions[J]. China Railway Science, 2019, 40(1): 47-54.
[7]张常勇, 钟铁毅, 杨海洋. 摩擦摆支座隔震连续梁桥地震能量反应研究[J]. 振动与冲击, 2017, 36(16): 63-67.
ZHANG Changyong, ZHONG Tieyi, YANG Haiyang. A study on seismic energy responses of a continuous girder bridge isolated by a friction pendulum system[J]. Journal of Vibration and Shock, 2017, 36(16): 63-67.
[8]PENG T B, YU X T, WANG Z N, et al. Study of the seismic performance of expansion double spherical seismic isolation bearings for continuous girder bridges[J]. Earthquake Engineering and Engineering Vibration, 2012, 11(2): 163-172.
[9]董俊, 曾永平, 陈克坚, 等.大跨铁路桥梁金属限位减震装置设计与力学性能[J]. 哈尔滨工业大学学报, 2020, 52(3): 136-146.
DONG Jun, ZENG Yongping, CHEN Kejian, et al. Design of metal limit damping device and analysis of mechanical properties for long span railway bridge[J]. Journal of Harbin Institute of technology, 2020, 52(3): 136-146.
[10]白全安. 新型减隔震装置在高速铁路桥梁中的应用研究[J]. 铁道工程学报, 2019, 36(10): 66-71.
BAI Quan’an. Application research on the new elastic-plastic limit seismic isolation devicein high-speed railway simple supported girder bridges[J]. Journal of Railway Engineering Society, 2019, 36(10): 66-71.
[11]颜志华, 马良喆, 陈永祁. 速度锁定装置在津秦客运专线减震设计中的应用[J]. 桥梁建设, 2014, 44(1): 95-100.
YAN Zhihua, MA Liangzhe, CHEN Yongqi. Applying of speed lock-up devices to seismic mitigation design of a continuous girder bridge on Tianjin—Qinhuangdao passenger dedicated railway[J]. Bridge Construction, 2014, 44(1): 95-100.
[12]李晓波. 高速铁路连续梁桥纵向减震装置机理性研究[J]. 铁道工程学报, 2017, 34(12): 50-56.
LI Xiaobo. Research on the mechanism of longitudinal seismic mitigation devices for high-speed railway continuous bridges[J]. Journal of Railway Engineering Society, 2017, 34(12): 50-56.
[13]FANG R, ZHANG W X, CHEN Y, et al. Aseismic effect and parametric analysis of the safe-belt device for a continuous bridge with equal height piers[J]. Engineering Structures, 2019, 199: 109553.
[14]FANG R, ZHANG W X, CHEN S T, et al. Seismic resistance of locking ball devices and optimal design for irregular continuous bridges with one fixed pier[J]. Bulletin of Earthquake Engineering, 2020, 18(10): 2355-2388.
[15]陈士通, 张文学, 杜修力, 等. 连续梁桥锁死销减震机理及影响参数研究[J]. 工程力学, 2016, 33(2): 74-80.
CHEN Shitong, ZHANG Wenxue, DU Xiuli, et al. Damping mechanism and effect parameters analysis of locking dowel for continuous bridges[J]. Engineering Mechanics, 2016, 33(2): 74-80.
[16]张文学, 陈士通, 杜修力, 等. 非规则连续梁桥应用锁死销减震控制[J]. 中南大学学报(自然科学版), 2017, 48(12): 3384-3390.
ZHANG Wenxue, CHEN Shitong, DU Xiuli, et al. Seismic control of irregular continuous bridge with locking dowel[J]. Journal of Central South University (Science and Technology), 2017, 48(12): 3384-3390.
[17]李锋, 陈士通, 马遥, 等. IFA装置连续梁桥减震性能研究[J]. 铁道标准设计, 2018, 62(12): 57-60.
LI Feng, CHEN Shitong, MA Yao, et al. Research on seismic absorption performance of IFA device of continuous beam bridge[J]. Railway Standard Design, 2018, 62(12): 57-60.[18]李锋. 基于锁定控制技术的连续梁桥减震研究[D]. 石家庄: 石家庄铁道大学, 2019.

PDF(2135 KB)

Accesses

Citation

Detail

段落导航
相关文章

/