[1]颜潮勇. 基于小波分析提取大跨径公路桥梁运营期GPS变形监测中的动态特性[J]. 甘肃科学学报, 2019, 31(3): 12-18.
YAN Chaoyong. Extraction of dynamic characteristics in GPS deformation monitoring of large-span highway bridge during operation period on the basis of wavelet analysis[J]. Journal of Gansu Sciences, 2019, 31(3): 12-18.
[2]LOVSE J W, TESKEY W F, LACHAPELLE G, et al. Dynamic deformation monitoring of tall structure using GPS technology[J]. Journal of Surveying Engineering, 1995, 121(1):35-40.
[3]KIJEWSKI-CORREA T, ASCE M, KAREEM A, et al. Experimental verification and full-scale deployment of global positioning systems to monitor the dynamic response of tall buildings[J]. Journal of Structural Engineering, 2006, 132(8):1242-1253.
[4]PSIMOULIS P A, STIROS S C. Measurement of deflections and of oscillation frequencies of engineering structures using robotic theodolites (RTS)[J]. Engineering Structures, 2007, 29(12): 3312-3324.
[5]梁强武, 吴玖荣,屈康能, 等. GPS测量系统和全站仪对在建超高层建筑动力特性的识别[J]. 科学技术与工程, 2020, 20(6): 2421-2428.
LIANG Qiangwu, WU Jiurong, QU Kangneng, et al. Dynamic characteristics identification of super high-rise building under construction by GPS and total station measuring system[J]. Science Technology and Engineering, 2020, 20(6): 2421-2428.
[6]熊春宝, 路华丽, 朱劲松, 等. 基于GPS-RTK和加速度计的桥梁动态变形监测试验[J]. 振动与冲击, 2019, 38(12): 69-73.
XIONG Chunbao, LU Huali, ZHU Jinsong, et al. Dynamic deformation monitoring of bridge structures based on GPS-RTK and accelerometers[J]. Journal of Vibration and Shock, 2019, 38 (12): 69-73.
[7]STIROS S C, PSIMOULIS P A. Response of a historical short-span railway bridge to passing trains: 3D deflections and dominant frequencies derived from robotic total station (RTS) measurements[J]. Engineering Structures, 2012, 45: 362-371.
[8]MOSCHAS F, STIROS S. Dynamic deflections of a stiff footbridge using 100 Hz GNSS and accelerometer data[J]. Journal of Surveying Engineering, 2015, 141(4): 04015003.
[9]SCHAAL R E, LAROCCA A P C. Measuring dynamic oscillations of a small span cable-stayed footbridge: case study using L1 GPS receivers[J]. Journal of Surveying Engineering, 2009, 135(1): 33-37.
[10]MOSCHAS F, STIROS S. Measurement of the dynamic displacements and of the modal frequencies of a short-span pedestrian bridge using GPS and an accelerometer[J]. Engineering Structures, 2011, 33(1): 10-17.
[11]PSIMOULIS P, PYTHAROULI S, KARAMBALIS D, et al. Potential of global positioning system (GPS) to measure frequencies of oscillations of engineering structures[J]. Journal of Sound & Vibration, 2008, 318(3): 606-623.
[12]YANG L H, YANG X Y, ZHU J G, et al. Novel method for spatial angle measurement based on rotating planar laser beams[J]. Chinese Journal of Mechanical Engineering,2010, 23(6): 758-764.
[13]DUANMU Q, YANG X Y, ZHU J G, et al. 3D coordinate measurement system based on optoelectronic scanning[J]. Infrared and Laser Engineering, 2011, 40(10): 2014-2019.
[14]GENG L, ZHU J G, YANG X Y, et al. Analysis of angle measurement uncertainty for wMPS[J]. Proc Spie, 2010,7544(2):754403.
[15]XIONG Z, ZHU J G, ZHAO Z Y, et al. Workspace measuring and positioning system based on rotating laser planes[J]. Mechanika, 2012, 18(1): 94-98.
[16]ZHAO Z Y, ZHU J G, XUE B, et al. Optimization for calibration of large-scale optical measurement positioning system by using spherical constraint[J]. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 2014, 31(7): 1427-1435.
[17]董超, 林嘉睿, 杨凌辉, 等. wMPS测角精度评定方法[J]. 纳米技术与精密工程, 2017, 15(6): 466-472.
DONG Chao, LIN Jiarui, YANG Linghui, et al. Evaluation method of angle measurement accuracy for wMPS[J]. Nanotechnology and Precision Engineering, 2017, 15(6): 466-472.
[18]张耀华, 林嘉睿, 任瑜, 等. 基于遗传算法的wMPS系统布局优化研究[J]. 传感技术学报, 2017, 30(5): 746-751.
ZHANG Yaohua, LIN Jiarui, REN Yu, et al. Placement optimization for workshop measurement and positioning system based on genetic algorithm[J]. Chinese Journal of Sensors and Actuators, 2017, 30(5): 746-751.
[19]颜伏伍. 汽车发动机原理[M]. 武汉: 机械工业出版社, 2018.
[20]PSIMOULIS P A, STIROS S C. Experimental assessment of the accuracy of GPS and RTS for the determination of the parameters of oscillation of major structures[J]. Computer-Aided Civil and Infrastructure Engineering, 2008,23(5):389-403.
[21]PSIMOULIS P, PYTHAROULI S, KARAMBALIS D, et al. Potential of global positioning system (GPS) to measure frequencies of oscillations of engineering structures[J]. Journal of Sound & Vibration, 2008, 318(3): 606-623.
[22]赵子越. 基于wMPS空间测量场的动态测量定位方法与技术研究[D]. 天津: 天津大学, 2016.