齿轮传动环向铅剪切阻尼器的试验研究与数值模拟

石路炜,彭凌云,苏经宇,尹祎文,康迎杰

振动与冲击 ›› 2021, Vol. 40 ›› Issue (19) : 89-97.

PDF(4067 KB)
PDF(4067 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (19) : 89-97.
论文

齿轮传动环向铅剪切阻尼器的试验研究与数值模拟

  • 石路炜1,彭凌云1,苏经宇1,尹祎文1,康迎杰2
作者信息 +

Tests and numerical simulation for GD-CSLD

  • SHI Luwei1, PENG Lingyun1, SU Jingyu1, YIN Yiwen1, KANG Yingjie2
Author information +
文章历史 +

摘要

金属屈服型阻尼器通常存在疲劳损伤后需要更换和不易满足大行程要求的问题,提出一种齿轮传动环向铅剪切阻尼器(GD-CSLD)。基于铅材常温动态回复再结晶性能,并通过齿轮齿条配合使该阻尼器具有理论上无疲劳损伤及无位移上限的优良特征。根据核心耗能部件的构造对3个不同剪切轴截面的模型试件进行了数值模拟和试验研究,选择最优剪切轴截面方案设计加工了GD-CSLD,通过性能试验对该阻尼器的滞回性能、疲劳性能进行研究。基于有限元分析和试验结果,对该阻尼器耗能机理进行分析。结果表明:该型阻尼器滞回性能稳定,可实现大行程加载,多次加载后基本无疲劳损伤效应;其耗能机理包含铅材屈服和侧向钢-铅摩擦两部分,且两者贡献基本相同。

Abstract

Metal yield damper usually needs to be replaced after fatigue damage and is not easy to meet the requirement of large stroke. Here, a gear drive-circumferential shear  lead damper (GD-CSLD) was proposed. It was shown that based on dynamic recovery recrystallization performance of lead at room temperature, GD-CSLD has excellent characteristics of no fatigue damage and no upper limit of displacement in theory through gear-rack fit. According to the structure of core energy dissipation components, tests and numerical simulation for 3 model specimens with different shear shaft sections were conducted. The optimal shear shaft section scheme was selected to design and process GD-CSLD. The hysteretic performance and fatigue performance of the damper were studied through performance tests. Based on the finite element analysis and test results, the energy dissipation mechanism of the damper was analyzed. The results showed that the hysteretic performance of GD-CSLD is stable, it can realize large stroke loading, and there is basically no fatigue damage effect after repeated loading; its energy dissipation mechanism includes two parts of lead material yield and lateral steel-lead friction, their contributions are basically the same.

关键词

铅阻尼器 / 环向剪切 / 齿轮传动 / 钢-铅摩擦 / 数值模拟

Key words

gear drive-circumferential shear lead damper (GD-CSLD) / steel-lead friction / numerical simulation

引用本文

导出引用
石路炜,彭凌云,苏经宇,尹祎文,康迎杰. 齿轮传动环向铅剪切阻尼器的试验研究与数值模拟[J]. 振动与冲击, 2021, 40(19): 89-97
SHI Luwei, PENG Lingyun, SU Jingyu, YIN Yiwen, KANG Yingjie. Tests and numerical simulation for GD-CSLD[J]. Journal of Vibration and Shock, 2021, 40(19): 89-97

参考文献

[1]何浩祥,王小兵,张小福.优化复合型金属阻尼器等效模型及减震性能[J].振动、测试与诊断,2018,38(5):890-896.
HE Haoxiang, WANG Xiaobing, ZHANG Xiaofu. Optimization of equivalent model and damping performance of composite metal damper[J]. Journal of  Vibration, Measurement  and Diagnosis, 2018,38(5): 890-896.
[2]冯广志,张如玉,卓于清,等.软钢阻尼器的研究综述[J].山西建筑,2019,45(3):56-58.
FENG Guangzhi, ZHANG Ruyu, ZHUO Yuqing, et al. Summary of research on mild steel damper
[J]. Shanxi Architecture, 2019,45(3): 56-58.
[3]韩建强,丁祖贤,张玉敏.消能减震及软钢阻尼器的研究与应用综述[J].建筑科学与工程学报,2018,35(5):60-69.
HAN Jianqiang, DING Zuxian, ZHANG Yumin. Summary of research and application of energy dissipation and soft steel damper[J]. Journal of Building Science and Engineering, 2018,35(5): 60-69.
[4]刘振林,李永亮,朱茂华,等.铝含量对铅力学性能的影响[J].有色金属科学与工程,2015,6(2):37-41.
LIU Zhenlin, LI Yongliang, ZHU Maohua, et al. Effect of Al content on the mechanical property of lead[J]. Nonferrous Metals Science and Engineering, 2015,6(2): 37-41.
[5]刘振林,卢智成,李永亮,等.Al含量对变形铅室温再结晶行为的影响[J].有色金属科学与工程,2016,7(3):35-39.
LIU Zhenlin,LU Zhicheng,LI Yongliang, et al. Effect of Al content on re-crystallization behavior of lead at room temperature[J]. Nonferrous Metals Science and Engineering, 2016,7(3):35-39.
[6]周云,周福霖,邓雪松.铅阻尼器的研究与应用[J].世界地震工程,1999(1):53-61.
ZHOU Yun, ZHOU Fulin, DENG Xuesong. Research and application of lead damper[J].
World Earthquake Engineering, 1999(1): 53-61.
[7]MONTI M D, ROBINSON W H. A lead shear damper suitable for reducing the motion induced by wind and earthquake[C]//11th World Conference on Earthquake Engineering. Acapuloo: WCEE, 1996.
[8]ROBINSON W H,MONTI M D.Seismic isolation and passive dampingthe new zealand experience on isolation[C]//Energy Dissipation Post-Smirt Conference on Isolation,Energy Dissipation and Control of Vibration of Structures. Taormina:[s.n.],1997.
[9]李冀龙, 欧进萍. 铅剪切阻尼器的阻尼力模型与设计[J]. 工程力学, 2006, 23(4): 67-73.
LI Jilong, OU Jinping. Damping force model and design of lead shear damper[J]. Engineering
Mechanics, 2006, 23(4): 67-73.
[10]王铁英,王艳武,王焕定,等.两类铅阻尼器的滞回性能研究[J].世界地震工程,2005(1):134-139.
WANG Tieying, WANG Yanwu, WANG Huanding, et al. Study on hysteretic performance of two types of lead dampers[J]. World Earthquake Engineering, 2005(1): 134-139.
[11]王宝顺,闫维明,何浩祥.改进型大行程板式铅剪切阻尼器力学模型及减震控制研究[J].振动与冲击,2018,37(16):177-184.
WANG Baoshun, YAN Weiming, HE Haoxiang. Study on mechanical model and damping control of improved large stroke plate type lead shear damper[J]. Journal of Vibration and Shock, 2018,37(16): 177-184.
[12]闫维明,顾智,彭凌云,等.新型转动式铅剪切阻尼器的试验研究与有限元分析[J].防灾减灾工程学报,2015,35(2):277-282.
YAN Weiming, GU Zhi, PENG Lingyun, et al. Experimental research and finite element analysis of a new type of rotary lead shear damper[J]. Journal of Disaster Prevention and Mitigation Engineering, 2015, 35(2): 277-282.
[13]张向东.铅剪切阻尼器在某高层住宅中的应用[J].建筑结构,2011,41(增刊1):147-151.
ZHANG Xiangdong. Application of lead shear damper in a high-rise building[J]. Building Structure, 2011,41(Suppl.1): 147-151.
[14]付仰强,王维凝,赵洋,等.剪切型铅阻尼器在高层钢结构中的应用[J].工业建筑,2011,41(增刊1):382-384.
FU Yangqiang, WANG Weining, ZHAO Yang, et al. Application of sheared lead damper in high-rise steel structures[J]. Industrial Architecture,2011,41(Suppl.1):382-384.

PDF(4067 KB)

Accesses

Citation

Detail

段落导航
相关文章

/