基于动态黏结滑移性能的钢筋混凝土分离式模型研究

刘智1,赵兰浩2,吴晓彬1,周永门1,王姣1

振动与冲击 ›› 2021, Vol. 40 ›› Issue (2) : 1-8.

PDF(2238 KB)
PDF(2238 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (2) : 1-8.
论文

基于动态黏结滑移性能的钢筋混凝土分离式模型研究

  • 刘智1,赵兰浩2,吴晓彬1,周永门1,王姣1
作者信息 +

Reinforced concrete separation model based on dynamic bond-slip performances

  • LIU Zhi1,ZHAO Lanhao2,WU Xiaobin1,ZHOU Yongmen1,WANG Jiao1
Author information +
文章历史 +

摘要

基于钢筋混凝土黏结滑移机理,搭建能够描述循环荷载作用下钢筋混凝土之间黏结性能变化过程的动态黏结-滑移本构关系,并结合单弹簧联结单元法建立钢筋混凝土分离式模型。模型避免了人为选择法向刚度困难的问题,并通过局部坐标系求解钢筋单元解决工程配筋布置问题,保证了复杂受力条件下的计算精度与计算效率。结合混凝土损伤模型进行经典算例分析,展示了模型对于结构中钢筋与混凝土局部变形与作用力关系的模拟,并对比分析了地震荷载作用下Koyna重力坝表层配筋对大坝整体动力响应及最终破坏模式的影响。研究表明,当坝体表层易损区域布置抗震钢筋之后,在钢筋与混凝土的协同作用下能够起到一定程度的限裂作用,提高坝体的抗震性能。算例的仿真结果均能够反映工程界的普遍认知,同时也验证了该模型的正确性。

Abstract

Based on the bond-slip mechanism of reinforced concrete, a dynamic bond-slip constitutive relation capable of describing the change of the bond behavior of steel bars and concrete under cyclic load was established, and a single-spring joint element method was used to establish a separation model of reinforced concrete.The model overcomes the difficulty to choose the normal stiffness coefficients, and solves the problem of the arrangement of steel bars by means of solving the steel bar elements in local coordinate system, which ensures the calculation accuracy and efficiency under complex stress conditions.In addition, a classic example analysis was performed by combined use of the concrete damage model.The model was used to simulate the relationship between the local deformation and forces of the steel bar and concrete in the structure.Furthermore, the effects of surface reinforcement of the Koyna gravity dam on the overall dynamic response and ultimate failure mode of the dam under the action of seismic load were compared and analyzed.The result shows that when seismic reinforcement is arranged in the vulnerable area of the surface of the dam, it can play a certain role in limiting cracking and improve the seismic performance of the dam.The simulation results of the examples can reflect the general cognition of the engineering community, and also verify the validity of the model.

关键词

基于钢筋混凝土黏结滑移机理 / 搭建能够描述循环荷载作用下钢筋混凝土之间黏结性能变化过程的动态黏结-滑移本构关系 / 并结合单弹簧联结单元法建立钢筋混凝土分离式模型。模型避免了人为选择法向刚度困难的问题 / 并通过局部坐标系求解钢筋单元解决工程配筋布置问题 / 保证了复杂受力条件下的计算精度与计算效率。结合混凝土损伤模型进行经典算例分析 / 展示了模型对于结构中钢筋与混凝土局部变形与作用力关系的模拟 / 并对比分析了地震荷载作用下Koyna重力坝表层配筋对大坝整体动力响应及最终破坏模式的影响。研究表明 / 当坝体表层易损区域布置抗震钢筋之后 / 在钢筋与混凝土的协同作用下能够起到一定程度的限裂作用 / 提高坝体的抗震性能。算例的仿真结果均能够反映工程界的普遍认知 / 同时也验证了该模型的正确性。

Key words

reinforced concrete / bond-slip / single-spring joint element / separation model / dynamic analysis

引用本文

导出引用
刘智1,赵兰浩2,吴晓彬1,周永门1,王姣1. 基于动态黏结滑移性能的钢筋混凝土分离式模型研究[J]. 振动与冲击, 2021, 40(2): 1-8
LIU Zhi1,ZHAO Lanhao2,WU Xiaobin1,ZHOU Yongmen1,WANG Jiao1. Reinforced concrete separation model based on dynamic bond-slip performances[J]. Journal of Vibration and Shock, 2021, 40(2): 1-8

参考文献

[1]龙渝川,张楚汉,周元德.钢筋混凝土嵌入式滑移模型[J].工程力学,2007(S1):41-45.
Long YuChuan, Zhang ChuHan, Zhou YuanDe. Embedded slip model for analyzing reinforced concrete structures[J]. Engineering Mechanics, 2007(S1):41-45.
[2]龙渝川,张楚汉,迟福东,周元德.混凝土重力坝抗震配筋加固措施的效果研究[J].水力发电学报,2008(04):77-82.
Long YuChuan, Zhang ChuHan, Chi FuDong, Zhou YuanDe. Study of steel reinforcement effects on concrete gravity dams under earthquake[J]. Journal of Hydroelectric Engineering, 2008(04):77-82.
[3]沈怀至,潘坚文,金峰,张楚汉.混凝土坝坝体配筋抗震措施研究[J].水利学报,2007(01):39-46.
Shen HuaiZhi, Pan JianWen, Jin Feng, Zhang ChuHan. Plastic-damage analysis of concrete dams strengthened with reinforcement in monolith for seismic resistance[J]. Journal of Hydraulic Engineering, 2007(01):39-46.
[4]艾亿谋,杜成斌,洪永文,孙立国.混凝土坝抗震加固中钢筋混凝土的动力本构模型[J]. 水利学报, 2009, 40(03):289-295.
Ai YiMou, Du ChengBin, Hong YongWen, Sun LiGuo. Dynamic constitutive model for reinforced concrete in aseismic strengthening of concrete dam[J]. Journal of Hydraulic Engineering, 2009, 40(03):289-295.
[5]张社荣,王高辉,庞博慧,杜成波.基于XFEM的强震区砼重力坝开裂与配筋抗震措施研究[J].振动与冲击,2013,32(06):137-142.
Zhang SheRong, Wang GaoHui, Pang BoHui, Du ChengBo. Seismic cracking and reinforcement analysis of concrete gravity dam based on XFEM[J]. Journal of Vibration and Shock, 2013,32(06):137-142.
[6]李静,陈健云,李雪雷.混凝土重力坝抗震配筋加固数值模拟分析[J].振动与冲击,2014,33(20):75-80.
Li Jing, Chen JianYun, Li XueLei. Numerical simulation of seismic reinforcement effects for concrete gravity dams[J]. Journal of Vibration and Shock, 2014,33(20):75-80.
[7]赵兰浩,李同春,牛志伟,颜天佑.基于混合坐标系的单弹簧联结单元法[J].河海大学学报(自然科学版),2008,36(06):796-800.
Zhao LanHao, Li TongChun, Niu ZhiWei, Yan TianYou. Single-spring joint element method based on mixed coordinate system[J]. Journal of Hohai University (Natural Sciences), 2008,36(06):796-800.
[8]Lanhao Z , Wei Z , Xin B , et al. Single Spring Joint Element Based on the Mixed Coordinate System[J]. Mathematical Problems in Engineering, 2015, 2015(1): 1-16.
[9]GB50010-2010. 混凝土结构设计规范[S]. 北京:中国建筑工业出版社, 2010.
GB50010-2010, Code for design of concrete structures [M]. China Architecture and Building Press. BeiJing, 2015. 1-427
[10]滕智明,邹离湘. 反复荷载下钢筋混凝土构件的非线性有限元分析[J]. 土木工程学报, 1996, 2(2):19-27.
Teng ZhiMing, Zhou LiXiang. Nonlinear finite element analysis of reinforced concrete members under repeated loading[J]. China Civil Engineering Journal, 1996, 2(2): 19-27.
[11]韦未,李同春,姚纬明.建立在应变空间上的混凝土四参数破坏准则[J].水利水电科技进展, 2004, (05):27-29+68.
Wei Wei, Li TongChun, Yao WeiMing. Four-parameter failure criterion for concrete in strain space[J].Advances In Science and Technology of Water Resources, 2004, (05):27-29+68.
[12] 韦未,李同春. 一种新的用于各向同性损伤模型的四参数等效应变[J]. 工程力学, 2005, 22(6):91-96.
Wei Wei, Li TongChun. A new four-parameter equivalent strain for isotropic damage model[J]. Engineering Mechanics, 2005, 22(6):91-96.
[13] 周秋景,张国新,李同春. 基于多轴等效应变动力损伤模型的混凝土坝工作性态分析[J]. 水力发电, 2014, 40(12):26-30.
Zhou QiuJing, Zhang GuoXin, Li TongChun. Analysis on Working Performance of Concrete Dams with a Dynamic Multi-axis Equivalent Strain Damage[J]. Water Power, 2014, 40(12):26-30.
[14] 周秋景,李同春,张国新. 多轴等效应变损伤模型及其在混凝土坝工作性态分析中的应用[J]. 水利水电科技进展, 2015, 35(3):42-46.
Zhou QiuJing, Li TongChun, Zhang GuoXin. A multi axis equivalent strain damage model and its application in analysis of working performance of concrete dams[J]. Advances in Science and Technology of Water Resources, 2015, 35(3):42-46.
[15] Walraven J, C. The influence of depth on the shear strength of light-weight concrete beams without shear reinforcement[R]. Stevin Laboratory, Delft University of Technology, Delft, The Netherlands, 1978.
[16] Shima H, Chou L, Okamura H. Micro and macro models for bond in reinforced concrete[J]. .Journal of the Faculty of Engineering, University of Tokyo(B), 1987, 39(2):133-94.
[17] 徐海滨,杜修力,杨贞军. 基于预插黏性界面单元的Koyna重力坝强震破坏过程分析[J].振动与冲击,2014,33(17):74-79+84.
Xu HaiBin, Du XiuLi, Yang ZhenJun. Seismic failure analysis of Koyna gravity dam using cohesive interface elements[J]. Journal of Vibration and Shock, 2014, 33(17):74-79+84.

PDF(2238 KB)

245

Accesses

0

Citation

Detail

段落导航
相关文章

/