不同温度环境中沥青混凝土动态抗压性能试验研究

宁致远,刘云贺,王琦,王为标

振动与冲击 ›› 2021, Vol. 40 ›› Issue (2) : 243-250.

PDF(1494 KB)
PDF(1494 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (2) : 243-250.
论文

不同温度环境中沥青混凝土动态抗压性能试验研究

  • 宁致远,刘云贺,王琦,王为标
作者信息 +

Experimental study on the dynamic compressive behavior of asphalt concrete under different temperature

  • NING Zhiyuan, LIU Yunhe, WANG Qi, WANG Weibiao
Author information +
文章历史 +

摘要

为研究沥青混凝土在不同温度环境中的动态力学特性,该研究在-20~30 ℃和10-5~10-2 s-1条件下对其进行了动态抗压试验研究。试验结果表明:温度和应变速率对沥青混凝土的力学性能有显著影响,降低温度或增加应变速率导致抗压强度和弹性模量增加,峰值应变减小;当温度大于20 ℃或小于-10 ℃时,应变速率由10-5 s-1增加到10-2 s-1,温度对抗压强度和弹性模量的影响逐渐减小,该研究提出的温度影响因子经验公式较好地反映了抗压强度和弹性模量随温度变化的规律。在-20~ 0 ℃温度区间,抗压强度和弹性模量的动态增强因子随应变速率呈线性增长;在0~30 ℃温度区间,抗压强度和弹性模量的动态增强因子随应变速率呈非线性增长。在此基础之上,基于时温等效原理,建立了沥青混凝土抗压强度和弹性模量的计算模型。该模型考虑了温度和应变速率对沥青混凝土的共同作用,与试验结果吻合较好。

Abstract

In order to study the dynamic behavior of asphalt concrete under different temperature, dynamic compressive tests of asphalt concrete were conducted under different temperature (-20-30 ℃) and strain rate (10-5-10-2 s-1).The test results show that the temperature and strain rate have significant impact on the mechanical properties of asphalt concrete.As the temperature decreases or strain rate increases, the elastic modulus and compressive strength increase, while the peak strain decreases.When the temperature is higher than 20 ℃ or lower than -10 ℃, the influence of temperature on the compressive strength and elastic modulus decreases gradually as the strain rate increases from 10-5-10-2 s-1.The empirical formulas for the temperature influence factors(TIFs) of the compressive strength and elastic modulus were put forward, which better reflect the variation trend of the compressive strength and elastic modulus with respect to the temperature.The dynamic increase factors(DIFs) of the compressive strength and elastic modulus increase linearly with the strain rate at a temperature range of -20-0 ℃, while they increase non-linearly with the strain rate at a temperature range of 0-30 ℃.Moreover, based on the principle of time-temperature superposition principle, a calculation model for the compressive strength and elastic modulus of asphalt concrete was established.The combined effect of temperature and strain rate on asphalt concrete was considered in this model, and the results are in good agreement with the test results.

关键词

沥青混凝土 / 动态抗压 / 应变速率 / 温度影响因子(TIF) / 时温等效原理

Key words

asphalt concrete / dynamic compression / strain rate / temperature influence factor(TIF) / time-temperature superposition principle

引用本文

导出引用
宁致远,刘云贺,王琦,王为标. 不同温度环境中沥青混凝土动态抗压性能试验研究[J]. 振动与冲击, 2021, 40(2): 243-250
NING Zhiyuan, LIU Yunhe, WANG Qi, WANG Weibiao. Experimental study on the dynamic compressive behavior of asphalt concrete under different temperature[J]. Journal of Vibration and Shock, 2021, 40(2): 243-250

参考文献

[1] 郝巨涛, 刘增宏, 汪正兴. 我国沥青混凝土防渗工程技术的发展与展望[J]. 水利学报, 2018,49(9):1137-1147.
Hao Jutao, Liu Zenghong, Wang Zhengxing. Development and prospect of hydropower project with asphalt concrete impervious elements in China[J]. Journal of Hydraulic Engineering, 2018, 49(9): 1137-1147.
[2] 邓铭江, 于海鸣, 李湘权.新疆坝工技术进展[J].岩土工程学报, 2010, 32(11):1678-1687.
Deng Mingjiang, Yu Haiming, Li Xiangquan. Advances of dam construction techniques in Xinjiang[J]. Chinese Journal of Geotechnical Engineering, 2010,32(11): 1678 -1687.
[3] 陈宇, 姜彤, 黄志全, 等. 温度对沥青混凝土力学特性的影响[J]. 岩土力学, 2010, 31(7): 92-96.
Chen Yu, Jiang Tong, Huang Zhiquan, et al. Effect of temperature on mechanical properties of asphalt concrete[J]. Rock and Soil Mechanics. 2010, 31(7): 92-96.
[4] Wang Weibiao, Kaare Höeg. Cyclic behavior of asphalt concrete used as impervious core in embankment dam[J]. Journal of Geotechnical and Environmental Engineering, ASCE, 2011, 137(5): 536-544.
[5] Wang Weibiao. Research on the suitability of asphalt concrete as water barrier in dams and dikes [D]. Norway: University of Oslo, 2008.
[6] Zhang Yingbo, Kaare Höeg, Wang Weibiao, et al. Watertightness, cracking resistance, and self-healing of asphalt concrete used as a water barrier in dams[J]. Canadian Geotechnical Journal, 2013, 50(3): 275-287.
[7] 余梁蜀, 晋晓海, 丁治平. 心墙沥青混凝土动力特性影响因素的试验研究[J]. 水力发电学报, 2013, 32(3): 194-198.
Yu Liangshu, Ji Xiaohai, Ding Zhiping. Experimental study on factors of dynamic properties of core wall asphalt concrete[J]. Journal of Hydroelectric Engineering, 2013, 32(3): 194-198.
[8] Y. Nakamura. Improvement of impervious asphalt mixture for high ductility against earthquake excitation[C]. // Proceedings of 4th International Conference Dam Engineering, China. 2004: 647-656.
[9] Wang Weibiao, Hu Kai, Feng Shan, et al. Shear behavior of hydraulic asphalt concrete at different temperatures and strain rates[J]. Construction and Building Material, 2020, 230: 17012-17021.
[10] 土石坝沥青混凝土面板和心墙设计规范: DL/T 5411 -2009 [S]. 北京: 中华人民共和国能源局, 2009.
Design code of asphalt concrete facings and cores for embankment dams: DL/T 5411-2009[S]. Beijing: Energy Bureau of the People's Republic of China, 2009.
[11] 水工沥青混凝土试验规程: DL/T 5362-2018[S]. 北京:中华人民共和国国家发展改革委员会, 2018.
Test code for hydraulic bitumen concrete: DL/T 5362-2006[S]. Beijing: National Development and Reform Commission of the People's Republic of China, 2006.
[12] Lu Dechun, Wang Guosheng, Du Xiuli, et al. A nonlinear dynamic uniaxial strength criterion that considers the ultimate dynamic strength of concrete[J]. International Journal of Impact Engineering, 2017, 103:124-137.
[13] 郑广辉,许金余,王鹏,等.不同饱水度红砂岩静态本构关系及动态力学性能研究[J].振动与冲击, 2018, 37(16): 31-37.
Zheng Guanghui, Xu Jinyu, Wang Peng. Static constitutive relation and dynamic mechanical properties of red sandstone with different water saturation [J]. Journal of vibration and shock,2018,37(16):31-37.
[14] 闫东明. 混凝土动态力学性能试验与理论研究[D]. 大连理工大学 2006.
YAN Dongming. Experimental and theoretical study on the dynamic properties of concrete[D]. Dalian University of Technology 2006.
[15] Zhu Xingyi, Yuan Ying, Li Lihan, et al. Identification of interfacial transition zone in asphalt concrete based on nano-scale metrology techniques[J]. Materials and Design, 2017, 129: 91-102.
[16] 傅强, 谢友均, 郑克仁, 等. 沥青对水泥沥青砂浆力学性能的影响[J]. 硅酸盐学报, 2014, 42(5):642-647.
Fu Qiang, Xie Youjun, Zheng Keren, et al. Influence of asphalt on mechanical properties of cement and asphalt mortar[J]. Journal of the Chinese Ceramic Society, 2014, 42(5):642-647.
[17] 王国盛, 路德春, 杜修力, 等. 混凝土材料真实动态强度及率效应机理研究[J]. 工程力学, 2018, 35(6): 58-67.
Wang Guoshen, Lu Dechun, Du Xiuli, et al. Research on the actual dynamic strength and the rate effect mechanisms for concrete materials[J]. Engineering Mechanics, 2018, 35(6): 58-67.
[18] Chen Xudong, Wu Shengxing, Zhou Jikai. Experimental and modeling study of dynamic mechanical properties of cement paste, mortar and concrete[J]. Construction and Building Materials, 2013, 47: 419-430.
[19] Liu Sai, Zhu Deju, Yao Yiming, et al. Effects of Strain Rate and Temperature on the Flexural Behavior of Basalt and Glass Textile-Reinforced Concrete[J]. Journal of Materials in Civil Engineering, 2018, 30(8):172-184.
[20] Scott Menard. Applied logistic regression analysis, second edition[M].London: Sage Publications, Inc. 2001.
[21] Johnson G R, Cook W H. A constitutive mode and data for metals subjected to large strains, high strain rate and high temperature[C]. //Proceedings of 7th International Symposium on Ballistics, The Hague, the Netherlands, 1983: 541-547.
[22] Wang Weibiao, Feng Shan, Zhang Yingbo. Investigation of interface between asphalt core and gravel transition zone in embankment dams[J]. Construction and Building Material, 2018, 185: 148-155.
[23] 张震东,马大为,杨云,等.考虑温度效应的圆形均布载荷下沥青混凝土场坪的动力响应分析[J].振动与冲击,2016,35(19):88-93+106.
Zhang Zhendong, Ma Dawei, Yang Yun. Dynamic response of an asphalt launching site under circular distributed load considering temperature effect[J]. Journal of vibration and shock,2016,35(19):88-93+106.

PDF(1494 KB)

Accesses

Citation

Detail

段落导航
相关文章

/