含吸声层和阻尼层叠层板的动力学建模研究

陆静1,2,王青1,2,陈莎1,2,王宇翔1,2

振动与冲击 ›› 2021, Vol. 40 ›› Issue (2) : 272-278.

PDF(1029 KB)
PDF(1029 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (2) : 272-278.
论文

含吸声层和阻尼层叠层板的动力学建模研究

  • 陆静1,2,王青1,2,陈莎1,2,王宇翔1,2
作者信息 +

Dynamic modeling of laminated plates covered with sound absorbing layer and damping layer

  • LU Jing1,2, WANG Qing1,2, CHEN Sha1,2, WANG Yuxiang1,2
Author information +
文章历史 +

摘要

基于基板和吸声层的一阶微分控制方程,考虑阻尼层的自重,并借助黏弹性理论和层间连续性条件将阻尼层的剪应力及偏心力矩写为基板和吸声层状态向量的形式,该研究建立了含吸声层和阻尼层叠层板的整合动力学控制方程。结合边界条件和齐次扩容精细积分方法提出了一种求解此类叠层板力学特性的半数值半解析方法。为了验证该方法的正确性,采用有限元软件对层合板的动力学特性进行了数值仿真,结果表明该研究的模型具有较高的精度,研究中还采用该方法分析了孔隙率等材料参数对叠层板动力学特性的影响。

Abstract

Based on the first-order differential governing equations of the substrate layer and the sound absorbing layer, considering the self-weight of the damping layer, the integrated dynamics governing equations of a laminated plate covered with sound absorbing layer and damping layer were established.In the model, the shear stress of the damping layer and its eccentric moment were expressed as the state vectors of the substrate layer and the sound absorbing layer according to the viscoelastic theory and inter-layer continuity conditions.Then, a semi-numerical semi-analytical method for solving the mechanical properties of such laminated plates was proposed, combinedly considering the boundary conditions and using the homogeneous expansion precision integration method.In order to verify the correctness of the proposed method, a numerical simulation was implemented to analyze the dynamic characteristics of the laminated plate by using the finite element software.The results demonstrate the precision of the present model.The influence of material parameters, such as porosity etc., on the dynamic characteristics of the laminated plate were also discussed.

关键词

吸声层 / 阻尼层 / 叠层板 / 动力学特性

Key words

sound absorbing layer / damping layer / laminated plate / dynamic characteristics

引用本文

导出引用
陆静1,2,王青1,2,陈莎1,2,王宇翔1,2. 含吸声层和阻尼层叠层板的动力学建模研究[J]. 振动与冲击, 2021, 40(2): 272-278
LU Jing1,2, WANG Qing1,2, CHEN Sha1,2, WANG Yuxiang1,2. Dynamic modeling of laminated plates covered with sound absorbing layer and damping layer[J]. Journal of Vibration and Shock, 2021, 40(2): 272-278

参考文献

 

[1]    Theodorakopoulos D D, Beskos D E. Flexural vibrations of poroelastic plates[J]. Acta Mechanica,1994, 103(1-4): 191-203.
[2]    Kerwin E M . Damping of flexural waves by a constrained viscoelastic layer[J]. J. The Acoustical Society of America, 1959, 31(7):952-962.
[3]    Johnson C D. Finite Element Prediction of Damping in structures with constrained viscoelastic layers [J]. AIAA,1982, 20(9): 1284-1290.
[4]    Yamaguchi T, Kurosawa Y, Enomoto H. Damped vibration analysis using finite element method with approximated modal damping for automotive double walls with a porous material[J]. Journal of Sound and Vibration, 2009, 325(1-2):436-450.
[5]    邓年春,邹振祝,杜华军,等.约束阻尼板的有限元动力分析[J].振动工程学报,2003, 16(4): 489-492.
Deng Nianchun,Zou Zhenzhu,Du Huajun,et al. A Finite Element Dynamic Analysis of Constrained Plates[J]. Journal of Vibration Engineering, 2003, 16(4): 489-492.
[6]    刘天雄,华宏星,陈兆能,等.约束层阻尼板的有限元建模研究[J].机械工程学报, 2002, 38(4) 108-114.
LiuiaTnxiong,Hua Hngxing,Chen Zhaoneng, et al. Study on the model of finite element of constrained layer damping plate[J]. Chinese Journal Of Mechanical Engineering, 2002, 38(4) 108-114.
[7]    邹元杰,赵德有.水中阻尼复合壳体结构声振特性的数值分析方法研究综述[J].振动与冲击,2004(04):83-89+151-152.
Zou Yuanjie,Zhao Deyou. Overview of numerical methods in vibro_acoustic study on underwater damped composite shells[J]. Journal of Vibration and Shock, 2004(04):83-89+151-152.
[8]    Xu B , Yang S , Li H . Sound Radiation from a Finite FGM Cylindrical Shell Covered with a Compliant Layer[C]// International Symposium on Intelligent Information Technology Application. IEEE, 2008.
[9]    Shengchun W , Zhaoxiang D , Weidong S . Sound transmission loss characteristics of unbounded orthotropic sandwich panels in bending vibration considering transverse shear deformation[J]. Composite Structures, 2010, 92(12):2885-2889.
[10]   Okazaki A , Tatemichi A , Mirza S . Damping Properties Of Two-layered Cylindrical Shells With An Unconstrained Viscoelastic Layer[J]. Journal of Sound and Vibration, 1994, 176(2):145-161.
[11]   李军强,刘宏昭,王忠民.线性粘弹性本构方程及其动力学应用研究综述[J].振动与冲击,2005(02):116-121+153.
Li Junqiang, LIU Hongzhao,Wang Zhongmin. Review on the linear constitutive equation and it’s dynamics applications to viscoelastic materials[J]. Journal of Vibration and Shock, 2005(02):116-121+153.
[12]   唐国金,李恩奇,李道奎,雷勇军.约束层阻尼板动力学问题的半解析解[J].固体力学学报. 2008 (02):149-156.
Guojin Tang, Enqi Li, Daokui Li, Yongjun Lei. Semi-Analytical Dynamics Solution Of Constrained Layer Damping Plate[J].Chinese Journal of Solid Mechanics, 2008 (02):149-156.
[13]   向宇,黄玉盈,陆静,等.部分覆盖 PCLD圆柱壳振动分析的一种新矩阵方法[J].振动工程学报, 2009, 22(2):175-182.
XIANG Yu, HUANG Yu-ying, LU Jing, YUAN Li-yun. A matrix method for analyzing vibration of a circular cylindrical shell with partially constrained layer damping treatment[J].Journal of Vibration Engineering, 2009, 22(2):175-182.
[14]   Xiang Y, Jiang H H, Lu J. Analyses of dynamic characteristics of a fluid-filled thin rectangular porous plate with various boundary conditions [J]. ACTA MECHANICA SOLIDA SINICA, 2017, 30(1) : 87-97.
[15]   向宇, 孙润, 陆静.求解饱和多孔介质圆柱壳动力学问题的一种半解析方法. 振动与冲击, 2018, 37(1): 208-215, 240.
XIANG Yu, SUN Run, LU Jing. Semi-analytical method for solving the dynamic behaviors of a fluid-saturated porous cylindrical shell[J]. Journal of Vibration and Shock, 2018, 37(1): 208-215, 240.
[16]   刘灿礼,袁丽芸.传递矩阵法分析平行四边形板的自由振动问题[J].广西科技大学学报,2017, 28(2):100-103.
LIU Can-li, YUAN Li-yun. Analysis of free vibration of parallel quadrilateral plate by transfer matrix method[J].Journal Of Guangxi University Of Science And Technology, 2017, 28(2):100-103.
[17]   向宇,蒋红华.多孔介质矩形薄板的精细积分模型[J].振动工程学报,2016,29(6):1021-1024.
XIANG Yu,JIANG Hong-hua.A precise integration model of a thin rectangular porous plate[J].Journal Of Vibration Engineering, 2016, 29(6):1021-1024.
[18]   Fazekas A, Dendievel R , Salvo L , et al. Effect of microstructural topology upon the stiffness and strength of 2D cellular structures[J]. International Journal of Mechanical Sciences, 2002, 44(10):2047-2066.
[19]   舒歌群,赵文龙,梁兴雨,陈宇,孙秀秀.约束阻尼结构的振动分析及结构参数优化研究[J].西安交通大学学报,2014,48(03):108-114.
SHU Gequn,ZHAO Wenlong,LIANG Xingyu,CHEN Yu,SUN Xiuxiu.Vibration Analysis and optimization of composite structure with constrained-layer damping treatment[J].Journal Of XIAN Jiaotong University, 2014,48(03):108-114.

PDF(1029 KB)

375

Accesses

0

Citation

Detail

段落导航
相关文章

/