短纤维对泡沫铝压缩力学性能与吸能特性的影响研究

郭亚周1,刘小川1,白春玉1,何思渊2,王计真1

振动与冲击 ›› 2021, Vol. 40 ›› Issue (2) : 57-62.

PDF(1998 KB)
PDF(1998 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (2) : 57-62.
论文

短纤维对泡沫铝压缩力学性能与吸能特性的影响研究

  • 郭亚周1,刘小川1,白春玉1,何思渊2,王计真1
作者信息 +

Effect of short fibers on compressive mechanical properties and energy absorption properties of aluminum foam

  • GUO Yazhou1,LIU Xiaochuan1,BAI Chunyu1,HE Siyuan2,WANG Jizhen1
Author information +
文章历史 +

摘要

为探索闭孔泡沫铝加入短纤维后的力学性能和吸能特性变化规律。利用熔体发泡法在铝熔体中加入短碳纤维后制作得到纤维增强泡沫铝,通过万能材料试验机和高速液压伺服材料试验机在常温下分别对泡沫铝、纤维增强泡沫铝进行准静态和中应变率下(0.001~100 s-1)的动态力学性能测试,分析了纤维长度、纤维含量对泡沫铝力学性能和吸能特性变化规律。研究结果表明,纤维在泡沫铝内部主要呈现三种不同的形态模式:穿透模式、贯穿模式和嵌入模式;在平均孔径为2 mm的泡沫铝中加入长度为1 mm的纤维后,大多数纤维呈现穿透模式,泡沫铝整体性能下降,加入等含量长度为3 mm的纤维后,大多数纤维呈现贯穿和嵌入模式,平台应力和吸能效率有所提升;加入纤维后,泡沫铝整体呈现更为明显的应变率效应。

Abstract

In order to explore the mechanical properties and energy absorption characteristics of closed cell aluminum foam after adding short fibers, a kind of fiber reinforced aluminum foam was prepared by adding short carbon fibers into molted aluminum by the melt foaming method.The dynamic mechanical properties of the aluminum foam and fiber reinforced aluminum foam at quasi-static and medium strain rates(0.001-100 s-1) were tested at room temperature by means of the universal material testing machine and the high speed hydraulic servo material testing machine.The mechanical properties and energy absorption characteristics of the aluminum foam with different fiber length and fiber content were analyzed.The results show that there are three different forms of fibers in aluminum foam: penetrating mode, penetration mode and embedding mode.Adding 1 mm fibers into the aluminum foam test piece with an average pore size of 2 mm, most of the fibers show penetrating mode, and the overall performance of the aluminum foam decreases.Adding 3 mm fibers, most fibers show penetration and embedding mode, and the platform stress and energy absorption efficiency increase.With the fiber, the aluminum foam presents more obvious strain rate effect.

关键词

泡沫铝 / 纤维增强 / 动态力学性能 / 吸能特性 / 应变率效应

Key words

aluminum foam / fiber reinforced / dynamic mechanical property / energy absorption / strain rate effect

引用本文

导出引用
郭亚周1,刘小川1,白春玉1,何思渊2,王计真1. 短纤维对泡沫铝压缩力学性能与吸能特性的影响研究[J]. 振动与冲击, 2021, 40(2): 57-62
GUO Yazhou1,LIU Xiaochuan1,BAI Chunyu1,HE Siyuan2,WANG Jizhen1. Effect of short fibers on compressive mechanical properties and energy absorption properties of aluminum foam[J]. Journal of Vibration and Shock, 2021, 40(2): 57-62

参考文献

[1] 刘新让,田晓耕,卢天健,等.泡沫铝夹芯圆筒抗爆性能研究[J]. 振动与冲击,2012,13(23):166-173.
Liu Xinrang, Tian Xiaogeng, Lu Tianjian, et al. Blast-resistance behaviors of sandwich-walled hollow cylinders with aluminum foam cores[J]. Journal of Vibration and Shock, 2012,31(23):166-173.
[2] 程鹏,李伟,翟敏刚等. 双层泡沫铝夹芯板抗滚石冲击结构性能优化研究[J]. 振动与冲击,2018,37(05):85-91.
Cheng Peng, Li Wei, Zhai Mingang, et al. Structure performance optimization of double-layer aluminum foam sandwich panels under rock falls impacts[J]. Journal of Vibration and Shock, 2018,37(05): 85-91.
[3] Shen J H, Lu G X, Ruan D. Compressive behavior of closed-cell aluminum foams at high strain rates[J]. Composites, 2010,41:678-685.
[4] 乔吉超,奚正平,汤慧萍等. 金属多孔材料压缩行为的评述[J]. 稀有金属材料与工程,2010,39(3):561-565.
Qiao Jichao, Xi Zhengping, Tang Huiping, et al. Review on Compressive Behavior of Porous Metals[J]. Rare Metal Materials and Engineering, 2010,39(3):561-565.
[5] Daoud A. Compressive response and energy absorption of foam A359-Al2O3 particle composites[J]. Journal of Alloys and Compounds, 2009, 468:567-605.
[6] Alizadeh M, MirzaeiA M. Compressive properties and energy absorption behavior of Al-Al2O3 composite foam synthesi- zed by space-holder technique[J]. Materials & Design, 2012, 35:419-424.
[7] Esmaeelzadeh S, Simchi A, Lehmhusc D. Effect of ceramic particle addition on the foaming behavior , cell structure and mechanical properties of P/M AlSi7 foam[J]. Materials Science and Engineering A, 2006,424:290-299.
[8] Mu Y, Yao G. Effect of fly ash particles on the compressive properties of closed-cell aluminum foams[J]. materials Engineering and Performance, 2010, 19:995-997.
[9] Mu Y, Yao G. Luo H. The dependence of damping property of fly ash reinforced closed-cell aluminum alloy foams on strain amplitude[J]. Materials & Design , 2010, 31:1007-1009.
[10] Mu Y, Yao G, Cao Z, et al. Strain- rate effects on the compressive response of closed-cell copper-coated carbon fiber/aluminum composite foam[J]. Scripta Materials, 2011, 64:61-64.
[11] Liu J, Yu S, Zhu X, et al. Effect of Al2O3 short fiber on the compressive properties of Zn-22Al foams[J]. Materials Letters, 2008, 62:3636-3638.
[12] 孙晓莉,孙勇,郑吉良等. 玻璃纤维增强泡沫铝性能的研究[J]. 热加工工艺,2014,43(2): 74-76.
SUN Xiaoli,SUN Yong,ZHENG Jiliang,et al.Investigation on properties of aluminum foam reinforced by copper-coated glass fiber[J]. Hot Working Technology,2014,43(2): 74-76.
[13] Idris M I, Vodenicharova T, Hoffman M. Mechanical behavior and energy absorption of closed-cell aluminum foam panels in uniaxial compressive[J]. Materials Science and Engineering: A, 2009, 517(1): 37-45.
[14] Chen W, Lu F, Frew D J, et al. Dynamic compression testing of soft materials[J]. Journal of Applied Mechanics, 2002, 69(3):214-223.
[15] Chen W, Zhang B, Forrestal M J, et al. A split Hopkinson bar technique for low impedance materials[J]. Experimental Mechanics, 1999, 39(20:81-85.
[16] Miltz J, Gruenbaum G. Evaluation of cushion properties of plastic foams compressive measurements[J]. Polymer Eng Sci, 1998,21(15): 1010-1014.

PDF(1998 KB)

Accesses

Citation

Detail

段落导航
相关文章

/