表面粗糙度对近壁圆柱体涡激振动响应影响的数值研究

熊友明,张壮壮,高云,彭庚,刘黎明,杨斌

振动与冲击 ›› 2021, Vol. 40 ›› Issue (20) : 108-116.

PDF(2314 KB)
PDF(2314 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (20) : 108-116.
论文

表面粗糙度对近壁圆柱体涡激振动响应影响的数值研究

  • 熊友明1,张壮壮1,高云2,3,彭庚4,刘黎明1,杨斌1
作者信息 +

Numerical study of the effects of surface roughness on vortex-induced vibration response of a circular cylinder near a plane wall

  • XIONG Youming1,ZHANG Zhuangzhuang1,GAO Yun2,3,PENG Geng4,LIU Liming1,YANG Bin1
Author information +
文章历史 +

摘要

使用数值模拟方法,研究了表面粗糙度对近壁圆柱体涡激振动响应的影响,对不同粗糙度下近壁圆柱体的振动幅值、振动频率、锁定区间、升力系数、拖曳力系数、斯脱哈尔数以及振动轨迹等参数进行了对比分析。分析结果显示:基于近壁圆柱体振动幅值以及振动频率变化趋势,可以将整个折合速度区间依次划分为三个区间:初始分支、锁定区间以及解锁区间。随着粗糙度的上升,近壁圆柱体横向振幅最大值呈上升趋势,锁定区间宽度逐渐变窄,拖曳力系数均值呈下降趋势。锁定区间里,较大的横向振幅使得壁面效应大幅增加,进一步导致升力系数均值明显大于0。

Abstract

The effects of surface roughness on the vortex-induced vibration (VIV) responses of a circular cylinder near a plane wall were studied numerically.The vibration amplitude, vibration frequency, lock-in region, lift force coefficient, drag force coefficient, Strouhal number and vibration trajectory of a near-wall cylinder with different surface roughnesses were compared.The analysis results show that the whole reduced velocity range can be divided into three regimes: initial branch, lock-in region, and desynchronization region based on the variation tendency of the vibration amplitude and frequency.As surface roughness increases, the maximum VIV amplitude in the cross-flow direction increases, the width of the lock-in region becomes narrower, and the mean drag coefficient displays decreasing tendency.During the lock-in region, large vibration amplitude results in significant increase of the wall proximity effect, further leading to the mean lift force coefficient obviously larger than zero.

关键词

涡激振动 / 表面粗糙度 / 近壁圆柱体 / 流体力系数 / 锁定区间

Key words

vortex-induced vibration / surface roughness / near-wall cylinder / hydrodynamic coefficient / lock-in region

引用本文

导出引用
熊友明,张壮壮,高云,彭庚,刘黎明,杨斌. 表面粗糙度对近壁圆柱体涡激振动响应影响的数值研究[J]. 振动与冲击, 2021, 40(20): 108-116
XIONG Youming,ZHANG Zhuangzhuang,GAO Yun,PENG Geng,LIU Liming,YANG Bin. Numerical study of the effects of surface roughness on vortex-induced vibration response of a circular cylinder near a plane wall[J]. Journal of Vibration and Shock, 2021, 40(20): 108-116

参考文献

[1]SUMER B M, FREDSE J.Hydrodynamics around cylindrical structures[M].World Scientific Pub Co Inc, Singapore, 2006.
[2]BLEVINS R D.Flow-induced vibration.Second ed[M].Malabar/Florida: Krieger Publishing, Inc, 2001.
[3]FENG C C.The measurement of vortex-induced effects in flow past a stationary and oscillating circular and D-section cylinders[D].Master’s Thesis, University of British Columbia, Vancouver, B.C., Canada, 1968.
[4]KHALAK A, WILLIAMSON C H K.Motions, forces and motion transitions in vortex-induced vibration at low mass-damping[J].Journal of Fluids and Structures, 1999,13: 813-851.
[5]LEI C, CHENG L, KAVANAGH K.Re-examination of the effect of a plane boundary on force and vortex-shedding of a circular cylinder[J].Journal of Wind Engineering and Industrial Aerodynamics, 1999,80(3): 263-286.
[6]王国兴, 孙万卿.近壁圆柱绕流水动力特性数值模拟与实验研究[J].海洋工程, 2000,28(1): 42-49.
WANG Guoxing, SUN Wanqing.Numerical and experimental studies on a circular cylinder subject to a flow near a plane wall[J].The ocean Engineering, 2000,28(1): 42-49.
[7]WANG X K, TAN S K.Near-wake flow characteristics of circular cylinder close to a wall[J].Journal of Fluids and Structures, 2008,24: 605-627.
[8]LI W J, LIN C, HSIEH S C, et al.Flow characteristics around a circular cylinder placed horizontally above a plane boundary[J].Journal of Engineering Mechanics, 2009,135(7): 697-716.
[9]余攀登, 赵广慧, 王飞.高雷诺数下近壁圆柱绕流数值模拟与分析[J].海洋石油, 2012,32(2): 102-105.
YU Pandeng, ZHAO Guanghui, WANG Fei.Numerical simulation of high Reynolds number flow around a circular cylinder near the wall[J].Offshore Oil, 2012,32(2): 102-105.
[10]孙壮, 张大朋, 刘璐, 等.海底管道悬跨段的近壁圆柱绕流分析[J].船舶工程, 2018,40(6): 106-111.
SUN Zhuang, ZHANG Dapeng, LIU Lu, et al.Analysis of flow around a near wall cylinder of submarine pipeline suspended span[J].Ship Engineering, 2018,40(6): 106-111.
[11]GAO F P, YANG B, WU Y X, et al.Steady current induced seabed scour around a vibrating pipeline[J].Applied Ocean Research, 2006,28: 291-298.
[12]YANG B, GAO F P, JENG D S, et al.Experimental study of vortex-induced vibrations of a pipeline near an erodible steady seabed[J].Ocean Engineering, 2008,35: 301-309.
[13]WANG X K, HAO Z, TAN S K.Vortex-induced vibrations of a neutrally buoyant circular cylinder near a plane wall[J].Journal of Fluids and Structures, 2013,39: 188-204.
[14]李国珍.海底悬空管道的动力响应分析[J].中国海洋平台, 2015,30(3): 49-53.
LI Guozhen.Analysis on dynamic response in submarine scouring pipeline[J].China Offshore Platform, 2015,30(3): 49-53.
[15]JIN Y M, DONG P.A novel wake oscillator model for simulation of cross-flow vortex induced vibrations of a circular cylinder close to a plane boundary[J].Ocean Engineering, 2016,117: 57-62.
[16]徐万海, 谢武德, 高喜峰, 等.海底多段悬跨管道涡激振动特性分析[J].船舶力学, 2017,21(8): 1025-1034.
XU Wanhai, XIE Wude, GAO Xifeng, et al.Study on vortex-induced vibrations (VIV) of multi-spans pipelines[J].Journal of Ship Mechanics, 2017,21(8): 1025-1034.
[17]MUNIR A, ZHAO M, WU H L, et al.Numerical investigation of the effect of plane boundary on two-degree-of-freedom of vortex-induced vibration of a circular cylinder in oscillatory flow[J].Ocean Engineering, 2018,148: 17-32.
[18]NAVROSE N, MITTAL S.Free vibrations of a cylinder.3D computations at Re=1 000[J].Journal of Fluids and Structures, 2013,41: 109-118.
[19]GAO Y, ZONG Z, ZOU L, et al.Numerical simulation of vortex-induced vibration of a circular cylinder with different surface roughnesses[J].Marine Structures, 2018,57: 165-179.
[20]HSIEH S C, LOW Y M, CHIEW, Y M.Flow characteristics around a circular cylinder subjected to vortex-induced vibration near a plane boundary[J].Journal of Fluids and Structures, 2016,65: 257-277.
[21]陈威霖, 及春宁, 许栋.低雷诺数下串列三圆柱涡激振动中的弛振现象及其影响因素[J].力学学报, 2018,50(4): 766-775.
CHEN Weilin, JI Chunning, XU Dong.Galloping in vortex-induced vibration of three tandem cylinders at low Reynolds numbers and its influencing factors[J].Chinese Journal of Theoretical and Applied Mechanics, 2018,50(4): 766-775.
[22]BOURGUET R, JACONO D.Flow-induced vibrations of a rotating cylinder[J].Journal of Fluid Mechanics, 2014,740: 342-380.
[23]ZHAO M, CUI Z, KWOK K, et al.Wake-induced vibration of a small cylinder in the wake of a large cylinder[J].Ocean Engineering, 2016,113: 75-89.
[24]GAO Y, YANG B, ZOU L, et al.Vortex-Induced vibrations of a long flexible cylinder in linear and exponential shear flows[J].China Ocean Engineering, 2019,33(1): 44-56.
[25]ZHU H , YAO J.Numerical evaluation of passive control of VIV by small control rods[J].Applied Ocean Research, 2015,51: 93-116.
[26]ZHU H J, YAO J, MA Y, et al.Simultaneous CFD evaluation of VIV suppression using smaller control cylinders[J].Journal of Fluids and Structures, 2015,57: 66-80.
[27]JAUVTIS N, WILLIAMSON C H K.The effect of two degrees of freedom on vortex-induced vibration at low mass and damping[J].Journal of Fluid Mechanics, 2004,509: 23-62.
[28]GAO Y, FU S X, WANG J G, et al.Experimental study of the effects of surface roughness on vortex-induced vibration of a flexible cylinder[J].Ocean Engineering, 2015,103: 40-54.
[29]高云, 郑文龙, 熊友明, 等.不同表面粗糙度下圆柱体涡激振动响应特性数值研究[J].上海交通大学学报, 2018,52(4): 419-428.
GAO Yun, ZHENG Wenlong, XIONG Youming, et al.Numerical study of the vortex induced vibrations of a circular cylinder with different degrees of surface roughness[J].Journal of Shanghai Jiao Tong University, 2018,52(4): 419-428.
[30]LI Z, YAO W G, YANG K, et al.On the vortex-induced oscillations of a freely vibrating cylinder in the vicinity of a stationary plane wall[J].Journal of Fluids and Structures, 2016,117: 57-62.
[31]FACCHINETTI M L, DE LANGRE E, BIOLLEY F.Coupling of structure and wake oscillators in vortex-induced vibrations[J].Journal of Fluids and Structures, 2004,19(2): 123-140.
[32]KRISTOFFER H A.An experimental investigation of in-line and combined in-line and cross-flow vortex induced vibrations[D].Dissertation, Trondheim, NTNU, 2007.
[33]高云, 付世晓, 熊友明, 等.表面粗糙度对立管涡激振动响应影响的试验研究[J].船舶力学, 2015,19(增刊1): 1-15.
GAO Yun, FU Shixiao, XIONG Youming, et al.Experimental study of the effects of surface roughness on the vortex-induced vibration response of a riser[J].Journal of Ship Mechanics, 2015,19(Sup1): 1-15.

PDF(2314 KB)

Accesses

Citation

Detail

段落导航
相关文章

/