通过将振动装置与两相流实验回路相结合的方式,利用曲柄连杆原理,对低频高幅式横向振动工况下水平通道内气液两相流动情况进行了实验研究。通过可视化实验得出相应工况下典型流型,同时改变振动幅度及振动频率,探讨了振动参数对流型转换界限的影响。研究结果表明,横向振动工况下流型与稳态相比,其基本特征大体一致,但气液相界面波动程度及含气率差异较大。不同振动参数下典型流型主要包括泡状流、弹状流、分层流、波状流及环状流。绘制流型转换界限结果显示,振动参数的增大导致弹状流及波状流区域增大,分层流及环状流区域减小,且振动参数的改变对弹状流转换界限有更为显著的影响。
Abstract
An experimental study on gas-liquid two-phase flow in a horizontal channel under the condition of low frequency and high amplitude transverse vibration was conducted by the method of combining the two-phase flow experiment loop with the vibration apparatus using the principle of a crank connecting rod.Through the visual experiment, the typical flow pattern under the corresponding working condition was obtained.The influence of the vibration parameters on the flow regime transition line was also discussed by changing the vibration amplitude and frequency.Results show that the basic characteristics of flow pattern are basically the same as that of steady state, but the fluctuation degree and gas holdup of gas-liquid interface are quite different.The typical flow patterns under different vibration parameters include bubbly flow, slug flow, stratified flow, wave flow and annular flow.The flow regime transition lines show that the slug flow and wave flow region expands with the increase of vibration parameters while the other flow pattern regions are relatively reduced.And the change of vibration parameters has a more significant influence on the transition boundary of slug flow.
关键词
横向振动 /
气液两相流 /
流型 /
振动参数
{{custom_keyword}} /
Key words
transverse vibration /
gas-liquid two-phase flow /
flow regime /
vibration parameter
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]BEATTIE D R,WHALLEY P B.A simple two-phase flow frictional pressure drop calculation method[J].International Journal of Multiphase Flow,1982,8(7):83-87.
[2]ZUBER N.Average volumetric concentration in two-phase flow systems[J].Heat Transfer,1965,87(3):453-468.
[3]RASSAME S,HIBIKI T.Drift-flux correlation for gas-liquid two-phase flow in a horizontal pipe[J].International Journal of Heat and Fluid Flow,2018,69(6):33-42.
[4]KANDLIKAR K,GRANDE W.Evolution of microchannel flow passages-thermohydraulic performance and fabrication technology[J].Heat Transfer Engineering,2003,24(2):3-17.
[5]KEW A,CORNWELL K.Correlations for the prediction of boiling heat transfer in small-diameter channels[J].Applied Thermal Engineering,1997,17:705-715.
[6]DAO G T,CHANG Q Y,LI C S.Local interfacial parameter distribution for two-phase flow under rolling conditions using a four-sensor optical probe[J].Annals of Nuclear Energy,2014,66(8):124-132.
[7]田道贵,孙立成,阎昌琪.摇摆状态下两相流动局部参数光学探针测量实验[J].核动力工程,2013,34(8):95-99.
TIAN Daogui, SUN Licheng, YAN Changqi.Experimental investigation on local parameter measurement using optical probes in two-phase flow under rolling condition[J].Nuclear Power Engineering Science,2013,34(8):95-99.
[8]YAN C X,YAN C Q,SUN L C.Investigation of the iterfacial parameter distribution in a bubbly flow in a narrow rectangular channel under inclined and rolling conditions[J].Progress in Nuclear Energy,2014,73(8):64-74.
[9]LI S D,TAN S C,XU C.Visualization study of bubble behavior in a subcooled flow boiling channel under rolling motion[J].Annals of Nuclear Energy,2015,76:390-400.
[10]栾锋,阎昌琪.摇摆状态下水平管内气-水两相流的流型研究[J].核动力工程,2007,28(2):19-23.
LUAN Feng, YAN Changqi.Study on the flow pattern of gas water two phase flow in a horizontal pipe in a swing state[J].Nuclear Power Engineering, 2007,28(2):19-23.
[11]李金辉,卢剑伟,姜俊昭.液体晃动对槽罐车摆振系统动力学响应的影响分析[J].振动与冲击,2018,37(2):135-141.
LI Jinhui, LU Jianwei, JIANG Junzhao.Analysis of tank truck shimmy with consideration of liquid sloshing[J].Journal of Vibration and Shock,2018,37(2):135-141.
[12]PENDAYALA R,JAYANTI S,BALKRISHNAN R.Convective heat transfer in single-phase flow in a vertical tube to axial low frequency osillations[J].Heat Mass Transfer,2008,44:857-864.
[13]周云龙,常赫.起伏振动状态下水平管内气液两相流研究[J].振动与冲击,2019,38(6):1-6.
ZHOU Yunlong, CHANG He.A study on gas-liquid two-phase flow in a horizontal channel under heaving motion [J].Journal of Vibration and Shock, 2019,38(6):1-6.
[14]TAITEL Y, DUKLER A E.A model for predicting flow regime transitions in horizontal and near horizontal gas liquid flow[J].AIChE Journal,1976,22(1):47-55.
[15]WEISMAN J,DUNCAN D, GIBSON J,et a1.The effect of fluid properties and pipe diameter on two-phase flow pattern in horizontal lines[J].International Journal of Multiphase Flow,1979,5:437-462
[16]LIN P Y, HANRATTY T Y.The effect of pipe diameter on flow pattern for air-water flow in horizontal pipes[J].International Journal of Multiphase Flow,1987,13(4):549-563
[17]周云龙,常赫.非线性振动下水平通道气液两相流动[J].化工学报,2019,70(7):2512-2519.
ZHOU Yunlong, CHANG He.Gas-liquid two-phase flow in horizontal channel under nonlinear vibration[J].CIESC Journal,2019,70(7):2512-2519.
[18]CATALINA P, PAULO W.Effect of forced flow oscillations on churn and annular flow in a long vertical tube[J].Experimental Thermal Fluid Science, 2017,81:345-357.
[19]RAN K,KIM S,BAJOREK S.Effects of pipe size on horizontal two-phase flow: Flow regimes, pressure drop, two-phase flow parameters, and drift-flux analysis[J].Experimental Thermal Fluid Science,2018,96:75-89.
[20]MANDHANE J M,GREGORY G A,AZIZ K.A flow pattern map for gas-liquid flow in horizontal pipes[J].International Journal of Multiphase Flow,1974,1:537-553.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}