一般约束边界下多孔FGM梁的非线性气动热弹性动力学特性研究

周凯,倪臻,华宏星

振动与冲击 ›› 2021, Vol. 40 ›› Issue (20) : 34-41.

PDF(1532 KB)
PDF(1532 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (20) : 34-41.
论文

一般约束边界下多孔FGM梁的非线性气动热弹性动力学特性研究

  • 周凯1,2,倪臻1,2,华宏星1,2
作者信息 +

Nonlinear aero-thermo-elastic characteristics analysis of porous FGM beams with general boundary conditions

  • ZHOU Kai1,2,NI Zhen1,2,HUA Hongxing1,2
Author information +
文章历史 +

摘要

高超声速飞行器在巡航和再入过程中,面临着严酷的气动力和热载荷复合环境。梁结构作为飞行器的基本构件,掌握它的气动热弹性动力学特性是开展其动态化设计及优化的基础。以多孔FGM梁为研究对象,应用超声速活塞理论和热弹性理论考虑气动力和热载荷的影响,基于一阶剪切变形理论和von-Karman大变形理论,根据能量法建立了一般约束边界下多孔FGM(functionally graded material)梁的气动热弹性非线性动力学模型,并利用Newmark法联合牛顿迭代法求解系统的动力学响应。通过将该模型计算所得的结果和文献结果对比,验证了该方法的准确性。在此基础上,通过数值算例分析了边界约束、FG材料指数、温度和孔隙率等参数对FGM梁动力学特性的影响规律。研究结果将为多孔FGM梁的动态化设计及优化提供理论参考依据。

Abstract

Aerospace flight vehicles are always subjected to severe environment including aerodynamic and thermal loads during the cruise and re-entry.Understanding of the aero-thermo-elastic characteristics of beam structures, which are served as the basic component of aerospace flight vehicles, is the basic to perform dynamic design and optimization of structures.The effects of thermal load and aerodynamic pressure were taken into consideration by using the thermo-elastic theory and the supersonic piston theory, respectively.The first-order shear deformation theory (FSDT) combined with von-Karman nonlinear strain-displacement relation was adopted to derive the governing equations of the system.The dynamic responses of the system were obtained by using the Newmark method combined with the Newton iteration method.By comparing the dynamic results obtained from the proposed model and those from the literature, the accuracy of the proposed method was validated.Finally, by performing the parametric analysis, the effects of the constraint, material constituent, thermal load and porosity ratio on the vibration and flutter characteristics of the beam structures were investigated.The results provide theoretical reference for the dynamic design and optimization of porous FGM beams.

关键词

功能梯度梁 / 孔隙 / 非线性振动 / 气动热弹性 / 一般约束边界

Key words

functionally graded material beam / porosity / nonlinear vibration / aero-thermo-elastic / general boundary conditions

引用本文

导出引用
周凯,倪臻,华宏星. 一般约束边界下多孔FGM梁的非线性气动热弹性动力学特性研究[J]. 振动与冲击, 2021, 40(20): 34-41
ZHOU Kai,NI Zhen,HUA Hongxing. Nonlinear aero-thermo-elastic characteristics analysis of porous FGM beams with general boundary conditions[J]. Journal of Vibration and Shock, 2021, 40(20): 34-41

参考文献

[1]吴振强, 刘宝瑞, 贾洲侠,等.强噪声激励下C/SiC复合材料壁板动态响应与失效分析[J].复合材料学报, 2019,36(5): 198-206.
WU Zhenqiang, LIU Baorui, JIA Zhouxia, et al.Dynamic resposes and failure analysis of C/SiC composite plates subjected high inensity acoustic loads[J].Acta Materiae Composite Sinica, 2019,36(5): 198-206.
[2]王琳杰,黎亮,章定国,等.热环境下大范围运动功能梯度薄板的刚-柔耦合动力学特性[J].振动与冲击, 2019,38(18): 79-88.
WANG Linjie, LI Liang, ZHANG Dingguo, et al.Rigid-flexibel coupling dynamic characteristics of a FGM thin plate undergoing large overall motions in thermal environment[J].Journal of Vibration and Shock, 2019,38(18): 79-88.
[3]宋智广.超声速梁板结构气动弹性颤振分析及控制[D].哈尔滨:哈尔滨工业大学,2011.
[4]HEMMATNEZHAD M, ANSARI R, RAHIMI G H.Large-amplitude free vibrations of functionally graded beams by means of a finite element formulation[J].Applied Mathematical Modelling, 2013,37(18/19): 8495-8504.
[5]FU Y, WANG J, MAO Y.Nonlinear analysis of buckling, free vibration and dynamic stability for the piezoelectric functionally graded beams in thermal environment[J].Applied Mathematical Modelling, 2012,36(9): 4324-4340.
[6]张云飞,杨鄂川,李映辉.变截面黏弹性旋转梁非线性参数振动研究[J].动力学与控制学报, 2018,16(5): 418-423.
ZHANG Yunfei, YANG Echuan, LI Yinghui.Studies on nonlinear parametric vibraation of a rotating viscoelastic beam with variable cross-setions[J].Journal of Dyanmics and Control, 2018,16(5): 418-423.
[7]LI F, SONG Z, SUN C.Aeroelastic properties of sandwich beam with pyramidal lattice core considering geometric nonlinearity in the supersonic airflow[J].Acta Mech Solida Sin, 2015,28(6): 639-646.
[8]麻岳敏,曹树谦,郭虎伦.考虑弯扭耦合运动的旋转带冠叶片非线性气动弹性分析[J].振动与冲击, 2019,38(2): 67-74.
MA Yuemin, CAO Shuqian, GUO Hulun.Nonlinear aeroelastic analysis of rotating shrouded blades under coupled bending and torsional[J].Journal of Vibration and Shock, 2019,38(2): 67-74.
[9]QIAN Y J, YANG X D, ZHANG W, et al.Flutter mechanism of Timoshenko beams in supersonic flow[J].Journal of Aerospace Engineering, 2019,32(4): 04019033.
[10]ZHOU K, HUANG X C, TIAN J J, et al.Vibration and flutter analysis of supersonic porous functionally graded material plates with temperature gradient and resting on elastic foundation[J].Composite Structures, 2018,204: 63-79.
[11]FARZAD E, ALI J.A higher-order thermomechanical vibration analysis of temperature-dependent FGM beams with porosities[J].Journal of Engineering, 2016,2016: 1-20.
[12]林华刚.超声速气流中复合材料结构的气动弹性颤振研究[D].哈尔滨:哈尔滨工业大学,2019.
[13]MARYNOWSKI K.Dynamic analysis of an axially moving sandwich beam with viscoelastic core[J].Composite structures, 2012,94(9): 2931-2936.
[14]SAMADPOUR M, ASADI H, WANG Q.Nonlinear aero-thermal flutter postponement of supersonic laminated composite beams with shape memory alloys[J].European Journal of Mechanics-A/Solids, 2016,57: 18-28.
[15]ARANI A G, SOLEYMANI T.Size-dependent vibration analysis of a rotating MR sandwich beam with varying cross section in supersonic airflow[J].International Journal of Mechanical Sciences, 2019,151: 288-299.
[16]SONG Z G, LI F M.Active aeroelastic flutter analysis and vibration control of supersonic beams using the piezoelectric actuator/sensor pairs[J].Smart Materials and Structures, 2011,20(5): 055013.
[17]肖伟,霍瑞东,李海超,等.改进傅里叶方法在梁结构振动特性分析中的应用[J].噪声与振动控制, 2019,39(1): 10-15.
XIAO Wei, HUO Ruidong, LI Haichao, et al.Application of improved Fourier series method in vibration analysis of beam structures[J].Noise and Vibration Control, 2019,39(1): 10-15.
[18]叶天贵,靳国永,刘志刚.横向剪切及伸缩变形对层合板振动特性的影响分析[J].振动与冲击, 2019,38(20): 118-125.
YE Tiangui, JIN Guoyong, LIU Zhigang.Effects of transverse shear and normal deformations on the vibrationcharacteristics of laminated plate[J].Journal of Vibration and Shock, 2019,38(20): 118-125.
[19]ILANKO S, MONTERRUBIO L, MOCHIDA Y.The rayleigh-ritz method for structural analysis[M].Wiley: Hoboken, 2014.
[20]张雄,王天舒,刘岩石.计算动力学[M].2版.北京:清华大学出版社, 2015.

PDF(1532 KB)

Accesses

Citation

Detail

段落导航
相关文章

/