基于爆源子结构的爆炸问题多尺度分析方法

李述涛,宝鑫,刘晶波,陈叶青

振动与冲击 ›› 2021, Vol. 40 ›› Issue (20) : 63-72.

PDF(2238 KB)
PDF(2238 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (20) : 63-72.
论文

基于爆源子结构的爆炸问题多尺度分析方法

  • 李述涛1,2,宝鑫1,刘晶波1,陈叶青2
作者信息 +

A multiscale analysis method for explosion problems based on the substructure of explosion source

  • LI Shutao1,2,BAO Xin1,LIU Jingbo1,CHEN Yeqing2
Author information +
文章历史 +

摘要

显式有限元方法是目前进行不同介质中炸药爆炸及爆轰波传播数值计算的主要方法。在此类研究中,通常需对爆源区设置高密度网格以捕捉爆炸过程中的高频成分。然而,对于大当量爆炸荷载作用下中远场地结构动力反应问题,即使在爆源-介质-目标整体模型中设置过渡网格,由于显式计算的时间步长受近爆源区域的最小网格尺寸控制,计算效率依然较低。鉴于此,提出一种基于爆源子结构的多尺度分析方法,该方法首先对近爆源区域自由波场进行分解,通过人工边界子结构的动力分析,将近爆源小尺度模型中的自由波场运动转化为大尺度模型中的等效爆炸荷载,从而完成爆炸问题的多尺度计算分析。提出的多尺度分析方法通过爆源子结构进行爆炸荷载的转化,避免了采用不规则形状单元的传统网格过渡方式,既降低了建模难度,又保证了计算精度,具有较强的实用性。此外,对于给定炸药当量的情况,通过该多尺度方法计算得到的等效爆炸荷载可作为标准荷载,在不同地下结构模型中重复使用,节省大量计算时间。通过均匀半空间自由场算例和成层半空间自由场算例验证了多尺度方法的可靠性。与整体模型方法相比,多尺度方法在保证计算精度的前提下,单元数量和计算耗时均大幅降低,计算效率优势明显。

Abstract

The explicit finite element method is currently the main method for numerical calculation of explosion process and detonation wave propagation in different media.In such researches, high-density grids are usually generated to capture the high-frequency components throughout the simulation process.However, for the structural response analysis under the large equivalent explosion loads, even though the transitional mesh is set in the overall model of an explosive-medium-target system, the time step of the explicit algorithm is still controlled by the minimum grid size in the area near the explosion source, resulting in lower calculation efficiency.In this paper, a multi-scale analysis method based on the explosive source substructure was proposed.Through this method, the free wave field in the near-source area was decomposed.Then the free wave field motions in the small-scale model of the near-source area were transformed into the equivalent explosive loads in the large-scale model.Therefore the multi-scale analysis of the e explosion problem can be completed.The multi-scale analysis method proposed in this paper obtains the explosion loads through the explosion source substructure, avoiding the traditional mesh transition method with irregular-shaped elements, which not only reduces the difficulty of modeling, but also ensures the calculation accuracy, and has the advantage of strong practicality.In addition, for a given explosive equivalent, the equivalent explosive loads calculated by the multi-scale method can be applied as standard loads, which can be reused in different underground structure models, saving a lot of calculation time.The accuracy and practicability of the multi-scale method were verified by a homogeneous half-space free field example and a layered half-space free field example.Compared to the overall model method, under the premise of ensuring the calculation accuracy, the multi-scale method greatly reduces the number of element and the consuming time, without losing accuracy, leading to the obvious efficiency advantage.

关键词

爆炸荷载 / 多尺度 / 爆源子结构 / 动力分析 / 人工边界

Key words

explosion load / multiscale / explosive source substructure / dynamic analysis / artificial boundary

引用本文

导出引用
李述涛,宝鑫,刘晶波,陈叶青. 基于爆源子结构的爆炸问题多尺度分析方法[J]. 振动与冲击, 2021, 40(20): 63-72
LI Shutao1,BAO Xin,LIU Jingbo,CHEN Yeqing. A multiscale analysis method for explosion problems based on the substructure of explosion source[J]. Journal of Vibration and Shock, 2021, 40(20): 63-72

参考文献

[1]ZUKAS J A, SCHEFFLER D R.Practical aspects of numerical simulations of dynamic events: effects of meshing[J].International Journal of Impact Engineering, 2000,24(9): 925-945.
[2]LUCCIONI B, AMBROSINI D, DANESI R.Blast load assessment using hydrocodes[J].Engineering Structures, 2006,28(12): 1736-1744 .
[3]SHI Yanchao, LI Zhongxian, HAO Hong.Mesh size effect in numerical simulation of blast wave propagation and interaction with structures[J].Trans.Tianjin Univ., 2008,14: 396-402.
[4]石磊, 杜修力, 樊鑫.爆炸冲击波数值计算网格划分方法研究[J].北京工业大学学报, 2010,36(11): 1465-1470.
SHI Lei, DU Xiuli, FAN Xin.Research on meshing method of numerical calculation of explosion shock wave[J].Journal of Beijing University of Technology, 2010,36(11): 1465-1470.
[5]卢红琴, 刘伟庆.空中爆炸冲击波的数值模拟研究[J].武汉理工大学学报, 2009,31(19): 105-108.
LU Hongqin, LIU Weiqing.Research on numerical simulation of blast wave in air[J].Journal of Wuhan University of Technology, 2009,31(19): 105-108.
[6]庄茁, 由小川, 廖剑辉, 等.基于ABAQUS的有限元分析和应用[M].北京: 清华大学出版社, 2014.
[7]Abaqus Analysis User’s Manual (version 6.14)[R].ABAQUS, INC., 2013.
[8]LS-DYNA Structured User~Manual[M].Livermore Software Technology Corp, 1999.
[9]杨建华, 吴泽南, 姚池, 等.地应力对岩石爆破开裂及爆炸地震波的影响研究[J].振动与冲击, 2020,39(13): 64-70.
YANG Jianhua, WU Zenan, YAO Chi, et al.Influences of in-situ stress on blast-induced rock fracture and seismic waves[J].Journal of Vibration and Shock, 2020,39(13): 64-70.
[10]肖思友, 姜元俊, 刘志祥, 等.高地应力下硬岩爆破破岩特性及能量分布研究[J].振动与冲击, 2018, 37(15): 143-149.
XIAO Siyou, JIANG Yuanjun, LIU Zhixiang, et al.Hard rock blasting energy distribution and fragmentation characteristics under high earth stress[J].Journal of Vibration and Shock, 2018,37(15): 143-149.
[11]LIU J, BAO X, WANG D, et al.The internal substructure method for seismic wave input in 3D dynamic soil-structure interaction analysis[J].Soil Dynamic and Earthquake Engineering, 2019,127: 1-12.
[12]刘晶波, 谭辉, 宝鑫, 等.土-结构动力相互作用分析中基于人工边界子结构的地震波动输入方法[J].力学学报, 2018,50(1): 32-43.
LIU Jingbo, TAN Hui, BAO Xin, et al.The seismic wave input method for soil-structure dynamic interaction analysis based on the substructure of artificial boundaries[J].Chinese Journal of Theoretical and Applied Mechanics, 2018,50(1): 32-43.
[13]谭辉, 宝鑫, 王东洋, 等.基于人工边界子结构的地震波动输入方法的简化[C]//第27届全国结构工程学术会议论文集(第Ⅱ册), 2018.
[14]BAO X, LIU J, WANG D, et al.Modification research of the internal substructure method for seismic wave input in deep underground structure-soil systems[J].Shock and Vibration, 2019: 1-13.
[15]BAO X, LIU J B, WANG D, et al.Application of the internal substructure method for seismic wave input in structural dynamic analysis considering SSI effect[C]//IOP Conf.Series: Earth and Environmental Science, 2019.
[16]LI Shutao, LIU Jingbo, YANG Zhou, et al.Multiscale method for seismic response of near-source sites[J].Advances in Civil Engineering, 2020: 1-25.
[17]刘晶波, 谷音, 杜义欣.一致黏弹性人工边界及黏弹性边界单元[J].岩土工程学报, 2006,28(9): 1070-1075.
LIU Jingbo, GU Yin, DU Yixin.Consistent viscous-spring artificial boundaries and viscous-spring boundary elements[J].Chinese Journal of Geotechnical Engineering, 2006,28(9): 1070-1075.
[18]谷音, 刘晶波, 杜义欣.三维一致粘弹性人工边界及等效黏弹性边界单元[J].工程力学, 2007,24(12): 31-37.
GU Yin, LIU Jingbo, DU Yixin.3D consistent viscous-spring artificial boundary and viscous-spring boundary element[J].Engineering Mechanics, 2007,24(12): 31-37.
[19]宝鑫, 刘晶波, 王东洋, 等.P波垂直入射下海域岛礁场地动力反应分析[J].工程力学, 2019,36(增刊1): 1-7.
BAO Xin, LIU Jingbo, WANG Dongyang, et al.Seismic response analysis of offshore reef site under incident P wave[J].Engineering Mechanics, 2019,36(Sup1): 1-7.
[20]刘华丽, 赵跃堂, 徐迎, 等.爆破地震动荷载方向对边坡安全系数的影响[J].振动与冲击, 2020,39(17): 94-98.
LIU Huali, ZHAO Yuetang, XU Ying, et al.Effects of blast seismic dynamic load direction on slope safety factor[J].Journal of Vibration and Shock, 2020,39(17): 94-98.
[21]孙宁新, 雷明锋, 张运良, 等.软弱夹层对爆炸应力波传播过程的影响研究[J].振动与冲击, 2020,39(16): 112-119.
SUN Ningxin, LEI Mingfeng, ZHANG Yunliang, et al.A study on the influence of weak interlayer on the propagation process of explosion stress wave[J].Journal of Vibration and Shock, 2020,39(16): 112-119.
[22]唐红梅, 周云涛, 廖云平.地下工程施工爆破围岩损伤分区研究[J].振动与冲击, 2015,34(23): 202-206.
TANG Hongmei, ZHOU Yuntao, LIAO Yunping.Study on damage zone of surrounding rock under construction blasting in underground engineering[J].Journal of Vibration and Shock, 2015,34(23): 202-206.
[23]刘晶波, 王振宇, 杜修力, 等.波动问题中的三维时域黏弹性人工边界[J].工程力学, 2005,22(6): 46-51.
LIU Jingbo, WANG Zhenyu, DU Xiuli, et al.There-dimensional visco-elastic artificial boundaries in time domain for wave motion problems[J].Engineering Mechanics, 2005,22(6): 46-51.
[24]邓国强, 刘国军, 郑全平.爆炸地冲击临界深度研究[J].防护工程, 2019,41(2): 31-37.
DENG Guoqiang, LIU Guojun, ZHENG Quanping.Research on critical depth of explosive ground impact[J].Protective engineering, 2019,41(2): 31-37.
[25]施鹏, 邓国强, 杨秀敏, 等.土中爆炸地冲击能量分布研究[J].爆炸与冲击, 2006,26(3): 240-244.
SHI Peng, DENG Guoqiang, YANG Xiumin, et al.Study on impact energy distribution of explosive ground in soil[J].Explosion and Shock Waves, 2006,26(3): 240-244.
[26]王羽, 高康华.土中爆炸波与地下结构相互作用计算方法研究综述[J].爆炸与冲击, 2015,35(5): 703-710.
WANG Yu, GAO Kanghua.Review on calculation methods for interaction between explosion waves in soil and underground structures[J].Explosion and Shock Waves, 2015,35(5): 703-710.
[27]刘晶波, 吕彦东.结构–地基动力相互作用问题分析的一种直接方法[J].土木工程学报, 1998,31(3): 55-64.
LIU Jingbo, L Yandong.A direct method for analysis of dynamic soil-structure interaction[J].China Civil Engineering Journal, 1998,31(3): 55-64.
[28]LIU J, SHARAN S K.Analysis of dynamic contact of cracks in viscoelastic media[J].Computer Methods in Applied Mechanics and Engineering, 1995,121(1/2/3/4): 187-200.
[29]都的箭, 刘志杰, 马书广.埋地管线在爆炸地冲击作用下的数值模拟[J].地下空间与工程学报, 2007(1): 185-190.
DU Dijian, LIU Zhijie, MA Shuguang.Numerical simulation for dynamical stress of buried pipelines under explosion ground shock waves[J].Journal of Underground Space and Engineering, 2007(1): 185-190.
[30]徐景林, 顾文彬, 刘建青, 王振雄, 等.圆柱形爆炸容器内爆炸载荷的分布规律[J].振动与冲击, 2020,39(18): 276-282.
XU Jinglin, GU Wenbin, LIU Jianqing, et al.Distribution of blast loading in cylindrical explosive containment vessels[J].Journal of Vibration and Shock, 2020,39(18): 276-282.
[31]陈兴旺, 王金相, 唐奎, 等.爆炸驱动多层球形破片初速场分析[J].振动与冲击, 2020,39(16): 129-134.
CHEN Xingwang, WANG Jinxiang, TANG Kui, et al.Analysis on the initial velocity field of a multi-layer spherical fragment driven by explosion[J].Journal of Vibration and Shock, 2020,39(16): 129-134.

PDF(2238 KB)

Accesses

Citation

Detail

段落导航
相关文章

/