面向精密气磁隔振的磁斥力负刚度装置的优化设计

赵亚敏,崔俊宁,邹丽敏,边星元

振动与冲击 ›› 2021, Vol. 40 ›› Issue (20) : 9-15.

PDF(1591 KB)
PDF(1591 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (20) : 9-15.
论文

面向精密气磁隔振的磁斥力负刚度装置的优化设计

  • 赵亚敏1,2,崔俊宁1,2,邹丽敏1,2,边星元1,2
作者信息 +
文章历史 +

摘要

为进一步提升气浮隔振器的性能、降低环境中的低频微幅振动干扰对超精密加工、测量设备的影响,提出了一种面向精密气磁隔微振的磁斥力负刚度装置。磁斥力负刚度装置由三块沿垂向同向磁化的立方永磁体水平布置构成,其刚度通过磁铁间距改变,且磁铁间距不受隔振负载振动幅值的影响。基于等效磁荷模型建立磁斥力负刚度装置的磁力、刚度及刚度非线性解析模型,采用有限元仿真验证了理论模型的正确性,并采用遗传算法优化几何结构参数。优化分析结果表明:将静平衡点刚度与±1 mm处的刚度非线性度作为目标函数的多目标优化可将负刚度幅值提升146.09%,刚度非线性度降低64.73%。该研究对精密仪器及系统、超精密制造、尖端科学实验系统中精密低频气磁隔振器的设计具有重要的应用价值。

Abstract

To further improve the performance of air floating vibration isolators and reduce the influence of low-frequency micro-amplitude vibration on ultra-precision machining and measuring equipment, a negative stiffness device with magnetic repulsion for precision air magnetic isolation was proposed.The negative stiffness device with magnetic repulsion is composed of three cubic permanent magnets arranged horizontally and magnetized in the same direction along the vertical direction.The stiffness of the negative stiffness device with magnetic repulsion was changed by the gap of magnets, and the gap of magnets was not affected by the amplitude of vibration isolation load.Based on the equivalent magnetic charge model, the magnetic force, stiffness, and stiffness nonlinearity analytical model of the negative stiffness device with magnetic repulsion was established and verified by finite element simulations.Based on the analytical model, the genetic algorithm was used to optimize the geometric parameters.The optimization analysis results show that the multi-objective optimization that takes the stiffness at static equilibrium and the stiffness nonlinearity at ±1 mm as the objective function can increase the negative stiffness by 146.09% and reduce the stiffness nonlinearity by 64.73%.The research is of great application value to the design of precision low frequency air magnetic isolators in precision instruments and systems, ultra-precision manufacturing, and cutting-edge scientific experimental systems.

关键词

气磁隔振 / 低频微幅振动 / 磁斥力负刚度装置 / 刚度非线性

Key words

air magnetic vibration isolation / low frequency micro-amplitude vibration / negative stiffness device with magnetic repulsion / stiffness nonlinearity

引用本文

导出引用
赵亚敏,崔俊宁,邹丽敏,边星元. 面向精密气磁隔振的磁斥力负刚度装置的优化设计[J]. 振动与冲击, 2021, 40(20): 9-15

参考文献

[1]吴文江.正负刚度并联精密主动隔振系统研究[D].武汉:华中科技大学, 2014.
[2]SHAN Y, WU W, CHEN X.Design of a miniaturized pneumatic vibration isolator with high-static-low-dynamic stiffness[J].Journal of Vibration and Acoustics, 2015,137(4): 045001.
[3]ZHAO Y, CUI J, ZHAO J, et al.Improving low frequency isolation performance of optical platforms using electromagnetic active-negative-stiffness method[J].Applied Sciences, 2020,10: 7342.
[4]BAI Y, LIU Y, LU Y, et al.Stability improvement for coil position locking of joule balance[J].Metrologia, 2017,54(4): 461-467.
[5]COURTLAND R.Moore’s law’s next step: 10 nanometers[J].IEEE Spectrum, 2017,54(1): 52-53.
[6]ZHANG F, SHAO S, TIAN Z, et al.Active-passive hybrid vibration isolation with magnetic negative stiffness isolator based on Maxwell normal stress[J].Mechanical Systems and Signal Processing, 2019,123: 244-263.
[7]李强,徐登峰,李林,等.基于正负刚度并联永磁隔振器的隔振性能分析及实验验证[J].振动与冲击, 2019,38(16): 100-107.
LI Qiang, XU Dengfeng, LI Lin, et al.Analysis and experiment of a magnetic levitation vibration isolator with the positive stiffness and the negative one in parallel[J].Journal of Vibration and Shock, 2019,38(16): 100-107.
[8]ZHANG L, ZHUAN X.Model predictive control method of a parallel electromagnetic isolation system based on the improved genetic algorithm[J].Journal of Vibration and Control, 2020: 1077546320909961.
[9]赵权,李韶华,冯桂珍.一种准零刚度车载隔振系统的设计与试验研究[J].振动与冲击, 2021,40(6): 55-63.
ZHAO Quan, LI Shaohua, FENG Guizhen.Design and test of a quasi-zero-stiffness vehicle vibration isolation system[J].Journal of Vibration and Shock, 2021,40(6): 55-63.
[10]XU D, YU Q, ZHOU J, et al.Theoretical and experimental analyses of a nonlinear magnetic vibration isolator with quasi-zero-stiffness characteristic[J].Journal of Sound and Vibration, 2013,332(14): 3377-3389.
[11]WANG X, ZHOU J, XU D, et al.Force transmissibility of a two-stage vibration isolation system with quasi-zero stiffness[J].Nonlinear Dynamics, 2017,87(1): 633-646.
[12]肖庆雨,周加喜,徐道临,等.一种六自由度准零刚度隔振平台[J].振动与冲击, 2019,38(1): 258-264.
XIAO Qingyu, ZHOU Jiaxi, XU Daolin, et al.A 6-DOF quasi-zero stiffness vibration isolation platform[J].Journal of Vibration and Shock, 2019,38(1): 258-264.
[13]WANG Q, ZHOU J, XU D, et al.Design and experimental investigation of ultra-low frequency vibration isolation during neonatal transport[J].Mechanical Systems and Signal Processing, 2020,139: 106633.
[14]张建卓, 李旦, 董申, 等.新型非线性超低频水平隔振系统的研制[J].机械设计, 2005,22(5): 19-21.
ZHANG Jiaozhuo, LI Dan, DONG Shen, et al.Development of new typed nonlinear ultra-low frequency horizontal vibration isolation system[J].Journal of Machine Design, 2005,22(5): 19-21.
[15]NIJSSE G J P.Linear motion systems.A modular approach for improved straightness performance[D].Delft University Press, 2001.
[16]CARRELLA A, BRENNAN M J, WATERS T P.On the design of a high-static-low-dynamic stiffness isolator using linear mechanical springs and magnets[J].Journal of Sound and Vibration, 2008,315(3): 712-720.
[17]WANG M, CHEN X, LI X.An ultra-low frequency two dofs’ vibration isolator using positive and negative stiffness in parallel[J].Mathematical Problems in Engineering, 2016,2016: 1-15.
[18]WU W, CHEN X, SHAN Y.Analysis and experiment of a vibration isolator using a novel magnetic spring with negative stiffness[J].Journal of Sound and Vibration, 2014,333(13): 2958-2970.
[19]戴鹏辉.宽域高线性度阵列组合式磁负刚度机构分析与设计[D].武汉:华中科技大学, 2019.
[20]DONG G, ZHANG X, XIE S, et al.Simulated and experimental studies on a high-static-low-dynamic stiffness isolator using magnetic negative stiffness spring[J].Mechanical Systems and Signal Processing, 2017,86: 188-203.
[21]SHAN J, SHI Z, GONG N, et al.Performance improvement of base isolation systems by incorporating eddy current damping and magnetic spring under earthquakes[J].Structural Control & Health Monitoring, 2020,27(6): e2524.
[22]OYELADE A O.Experiment study on nonlinear oscillator containing magnetic spring with negative stiffness[J].International Journal of Nonlinear Mechanics, 2020,120: 103396.
[23]王迎春,柴凯,刘树勇,等.永磁体型高静低动刚度隔振器试验研究[J].噪声与振动控制, 2019,39(5): 223-230.
WANG Yingchun, CHAI Kai, LIU Shuyoug, et al.Experimental study on the permanent magnets vibration isolators with high-static and low-dynamic stiffness[J].Noise and Vibration Control, 2019,39(5): 223-230.
[24]ZHENG Y, ZHANG X, LUO Y, et al.Design and experiment of a high-static-low-dynamic stiffness isolator using a negative stiffness magnetic spring[J].Journal of Sound and Vibration, 2016,360: 31-52.
[25]ZHENG Y, LI Q, YAN B, et al.A Stewart isolator with high-static-low-dynamic stiffness struts based on negative stiffness magnetic springs[J].Journal of Sound and Vibration, 2018,422: 390-408.
[26]ZHOU Z, CHEN S, XIA D, et al.The design of negative stiffness spring for precision vibration isolation using axially magnetized permanent magnet rings[J].Journal of Vibration and Control, 2019,25(19/20): 2667-2677.
[27]ZHOU J, WANG K, XU D, et al.Vibration isolation in neonatal transport by using a quasi-zero-stiffness isolator [J].Journal of Vibration & Control, 2018,24(5): 3278-3291.
[28]WANG Q, ZHOU J, XU D, et al.Design and experimental investigation of ultra-low frequency vibration isolation during neonatal transport[J].Mechanical Systems and Signal Processing, 2020,139: 106633.
[29]李爽,楼京俊,杨庆超,等.双环永磁体型高静低动刚度隔振器设计、建模与试验研究[J].振动工程学报, 2019,32(4): 675-684.
LI Shuang, LOU Jingjun, YANG Qingchao, et al.Design and experiment of a vibration isolator using double-ring permanent magnets springs with negative stiffness[J].Journal of Vibration Engineering, 2019,32(4): 675-684.

PDF(1591 KB)

469

Accesses

0

Citation

Detail

段落导航
相关文章

/