刚性变弯度机翼设计及低速风洞试验研究

冒森1,杨超2,谢长川2,孟杨2

振动与冲击 ›› 2021, Vol. 40 ›› Issue (21) : 157-167.

PDF(3138 KB)
PDF(3138 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (21) : 157-167.
论文

刚性变弯度机翼设计及低速风洞试验研究

  • 冒森1,杨超2,谢长川2,孟杨2
作者信息 +

Design and low speed wind tunnel tests of a rigid variable camber wing

  • MAO Sen1, YANG Chao2, XIE Changchuan2, MENG Yang2
Author information +
文章历史 +

摘要

飞行器机翼变弯度技术可以实时调整机翼弯度来提高飞行效率,以适应复杂多变的任务环境,被认为是未来航空技术研究方向之一。本文考虑到当前技术成熟度和可靠性,设计了一款由四段刚性翼盒构成的变弯度机翼。变弯度机翼具有结构复杂,难以精确建模的特点,在初步设计阶段需要结合仿真计算和风洞试验开展研究。于是本文首先通过气动力计算软件XFOIL对刚性变弯度机翼进行仿真计算。然后设计变弯度机翼风洞试验平台,搭建测试采集系统,对刚性变弯度机翼进行低速风洞试验。仿真计算结果和风洞试验结果表明本文提出的刚性变弯度机翼作为变弯度机翼的一种设计方案,结构简单可靠且变形效果显著,在增升减阻,保证高升阻比和提供机翼配平力矩等方面具有优势。本文设计的变形机翼风洞试验平台结构可靠,容易操作,其实验值和仿真计算值平均相对误差小于15%,能正确反映转角变化对刚性变弯度机翼气动力的影响,为设计方法的发展和未来实际飞行器的设计提供验证手段。

Abstract

Variable camber wing technology can adjust the wing camber in real time to improve flight efficiency to adapt to complex and changing mission environments, and is considered to be one of the directions of future aviation technology research. A variable camber wing consisting of four rigid wing boxes is designed considering the current technology maturity and reliability. While the variable camber wing has the characteristics of complicated structure and difficult to accurately model, it is necessary to carry out research in combination with simulation calculation and wind tunnel test in the preliminary design stage. Firstly the aerodynamic calculation software XFOIL is used to simulate the rigid variable camber wing. Secondly the wind tunnel test platform of the variable camber wing is designed, and the acquisition system is built to conduct low speed wind tunnel test on the rigid variable camber wing. Simulation calculation results and wind tunnel test results show that the rigid variable camber wing proposed in this paper is simple and reliable and have advantages in increasing lift and reducing drag, ensuring high lift to drag ratio and providing wing balancing moment. Besides, the wind tunnel test platform of morphing wing is also reliable in structure and easy to operate. The average relative error between the experimental value and the simulation value is less than 15%. It can accurately reflect the influence of the change of wing box angle on the aerodynamic force of the rigid variable camber wing, and can provide a verification method for the development of design methods and the design of future actual aircraft.

关键词

变弯度机翼 / 变形机翼设计 / 风洞试验 / 气动力计算 / 结构设计

Key words

 variable camber wing / morphing wing design / wind tunnel test / aerodynamic calculation / structure design

引用本文

导出引用
冒森1,杨超2,谢长川2,孟杨2. 刚性变弯度机翼设计及低速风洞试验研究[J]. 振动与冲击, 2021, 40(21): 157-167
MAO Sen1, YANG Chao2, XIE Changchuan2, MENG Yang2. Design and low speed wind tunnel tests of a rigid variable camber wing[J]. Journal of Vibration and Shock, 2021, 40(21): 157-167

参考文献

[1]. 崔尔杰, 白鹏, 杨基明.智能变形飞行器的发展道路[J].航空制造技术, 2007, 08(005):28-31
CUI E J, BAI P, YANG J M.Development path of intelligent deformation aircraft[J].Aviation manufacturing technology, 2007, 08(005):28-31(in Chinese)
[2]. 张音旋, 陈亮, 吴江鹏.可变弯度机翼后缘的研究进展及其关键技术[J].飞机设计, 2017, 037(006):34-39
ZHANG Y X, CHEN L, WU J P.Research progress and key technologies of variable camber trailing edge of wing[J].Aircraft design, 2017, 037(006):34-39(in Chinese)
[3]. Fujiwara G E, Nguyen N T, Livne E, et al.Aerostructural Design Optimization of a Flexible Wing Aircraft with Continuous Morphing Trailing Edge[M]//2018 Multidisciplinary Analysis and Optimization Conference.
[4]. 聂雪媛,黄程德,杨国伟. 基于CFD/CSD耦合的结构几何非线性静气动弹性数值方法研究[J]. 振动与冲击, 2016, 35(8): 48-53.
Nie Xue-Yuan, Huang Cheng-De,Yang Guo-Wei. Numerical Analysis for Aeroelastic with Structural Geometrical Nonlinearity using CFD/CSD Coupled Method. JOURNAL OF VIBRATION AND SHOCK, 2016, 35(8): 48-53. (in Chinese)
[5]. 李哲, 葛文杰, 王和平.柔性变形机翼后缘拓扑优化设计[J].计算机仿真, 2009, 03(18):70-73
LI Z, GE W J, WANG H P.Topological optimization design of trailing edge of flexible deformed wing[J].Computer simulation, 2009, 03(18):70-73(in Chinese)
[6]. Mao S, Xie C, Yang L, et al.Static Aeroelastic Characteristics of Morphing Trailing-Edge Wing Using Geometrically Exact Vortex Lattice Method[J].International Journal of Aerospace Engineering, 2019, 10(1155):1-15
[7]. 倪迎鸽,侯赤,万小朋,赵美英. 具有结构非线性的折叠机翼气动弹性分析[J]. 振动与冲击, 2016, 35(18): 165-171.
NI Ying-ge, HOU Chi, WAN Xiao-peng, ZHAO Mei-ying. Aeroelastic analysis of a folding wing with structural nonlinearities. JOURNAL OF VIBRATION AND SHOCK, 2016, 35(18): 165-171. (in Chinese)
[8]. Campanile L F, Sachau D.The belt-rib concept: A structronic approach to variable camber[J].Journal of Intelligent Material Systems & Structures, 2000, 11(2000):215-224
[9]. U.Icardi,LFerreroPreliminary study of an adaptive wing with shape memory alloy torsion actuators[J].Materials & Design, 2009, 30(10):4200-4210
[10]. 王晓宏.形状记忆合金驱动主动变形结构的设计与制作[D]. 哈尔滨工业大学, 2006.
WANG X H.Design and fabrication of shape memory alloy driven active deformation structure [D]. Harbin Institute of Technology, 2006. (in Chinese)
[11]. 李军府, 艾俊强, 董海锋.飞机变形技术发展探究[J].航空科学技术, 2009, 2(001):5-8
LI J F, AI J Q, DONG H F.Research on aircraft deformation technology development[J].Aviation science and technology, 2009, 02(001):5-8 (in Chinese)
[12]. Livne E, Weisshaar T A.Aeroelasticity of Nonconventional Airplane Configurations -Past and Future[J].Journal of Aircraft, 2015, 40(40):1047-1065
[13]. Probst T, Kochersberger K, Stiltner B, et al.Smart material actuators as a means of UAV flight control[C]// 2012.
[14]. Woods B K S, Friswell M I.Preliminary Investigation of a Fishbone Active Camber Concept: ASME 2012 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, 2012[C].
[15]. Woods B K, Bilgen O, Friswell M I.Wind tunnel testing of the fish bone active camber morphing concept[J].Journal of Intelligent Material Systems and Structures, 2014, 25(7):772-785
[16]. Vasista S, De Gaspari A, Ricci S, et al. Compliant structures-based wing and wingtip morphing devices[J]. Aircraft Engineering and Aerospace Technology, 2016, 88(2): 311-330.
[17]. Jenett B , Calisch S , Cellucci D , et al. Digital Morphing Wing: Active Wing Shaping Concept Using Composite Lattice-Based Cellular Structures[J]. Soft Robotics, 2017, 4(1):33-48.
[18]. 刘逸峰, 徐志伟.驱动变厚度机翼结构设计及实验研究[J].江苏航空, 2018, 155(04):32-36
LIU Y F, XU Z W.Structure design and experimental study of SMA driven variable thickness wing[J].Jiangsu airlines, 2018, 155(04):32-36(in Chinese)
[19]. Hetrick J A, Ervin G F, Kota S .Compliant Structure Design for Varying Surface Contours[P]US20090302168
[20]. Hetrick J, Osborn R, Kota S, et al.Flight Testing of Mission Adaptive Compliant Wing[C]// Aiaa/asme/asce/ahs/asc Structures, Structural Dynamics, & Materials Conference. 2013.
[21]. Pecora R, Concilio A, Dimino I, et al.Structural Design of an Adaptive Wing Trailing Edge for Enhanced Cruise Performance[C]// 24th AIAA/AHS Adaptive Structures Conference. 2016.
[22]. Dimino I, Concilio A, Pecora R.Safety and Reliability Aspects of an Adaptive Trailing Edge Device (ATED): 24th AIAA/AHS Adaptive Structures Conference, 2016[C].
[23]. Dimino I, Ciminello M, Concilio A, et al.Control System Design for a Morphing Wing Trailing Edge[J].Recent Patents on Mechanical Engineering, 2017, 7(2):138-148
[24]. Woods B K, Fincham J H, Friswell M I.Aerodynamic modelling of the fish bone active camber morphing concept: Proceedings of the RAeS Applied Aerodynamics Conference, Bristol, UK, 2014[C]

PDF(3138 KB)

Accesses

Citation

Detail

段落导航
相关文章

/