磁流变弹性体基声子晶体的弹性波可调拓扑传输研究

李潘玉 1,游世辉 1,2,李维 1,曾宪任 1,3,张圣东 1,3

振动与冲击 ›› 2021, Vol. 40 ›› Issue (21) : 16-24.

PDF(3542 KB)
PDF(3542 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (21) : 16-24.
论文

磁流变弹性体基声子晶体的弹性波可调拓扑传输研究

  • 李潘玉 1,游世辉 1,2,李维 1,曾宪任 1,3,张圣东 1,3
作者信息 +

Adjustable topological transmission of elastic waves in MR elastic matrix-based phonon crystals

  • LI Panyu1, YOU Shihui1,2, LI Wei1, ZENG Xianren1,3, ZHANG Shengdong1,3
Author information +
文章历史 +

摘要

将规则的铁质三脚杆以六角晶格形式嵌入磁流变弹性基体中设计了一种二维声学超材料,通过计算分析结构元胞的色散关系,找出k点必然简并狄拉克点,并通过旋转单个三脚杆打破晶格结构的空间对称性使狄拉克点完成了打开—简并—打开的变化过程。模拟量子谷霍尔效应,在k点必然简并狄拉克点的变化过程中导致了不同的谷赝自旋之间能带发生反转,实现了拓扑相变。通过对声学超材料超元胞色散关系的计算,发现了结构中存在的拓扑边界态,利用拓扑边界态设计弹性波拓扑传输通道,实现了对弹性波的精确引导,并可以通过外加磁场改变磁流变基体材料的剪切模量来改变拓扑传输通道的频率范围,实现了对拓扑传输通道传输频率的非接触式主动调控。研究结果可以为噪声及振动等的智能控制提供相应的参考。

Abstract

A two-dimensional acoustic metamaterial is designed by embedding a regular iron tri-legged rod into a magnetorheological elastic matrix in the form of a hexagonal lattice, Through calculation and analysis of the structure of the unit cell dispersion relations, find the k point is bound to degenerate Dirac point, The spatial symmetry of lattice structure is broken by rotating a single tri-legged rod so that the change process of open-Degeneration-open-open is completed. With analog quantum valley Hall effect, in the change of the k point is bound to degenerate Dirac point led to different valley constraint in the process of reverse spin between bands, finally realizes the topological transformation. Dispersion relation is obtained by calculating acoustic metamaterial super cell, discovered topology boundary condition in this structure, The topological transmission channel is designed by using topological boundary state to guide the elastic wave accurately, and the frequency range of the topological transmission channel can be changed by changing the shear modulus of the Magnetorheological matrix material through the external magnetic field, so as to realize the non-contact active control of the transmission frequency of the topological transmission channel. The research results can provide reference for intelligent control of noise and vibration. 
 

关键词

磁流变弹性体 / 声学超材料 / 拓扑相变 / 主动调控 / 拓扑传输通道

Key words

 Magnetorheological elastomer / Acoustic metamaterial / The topological transformation / Active control / Topological transport channel

引用本文

导出引用
李潘玉 1,游世辉 1,2,李维 1,曾宪任 1,3,张圣东 1,3. 磁流变弹性体基声子晶体的弹性波可调拓扑传输研究[J]. 振动与冲击, 2021, 40(21): 16-24
LI Panyu1, YOU Shihui1,2, LI Wei1, ZENG Xianren1,3, ZHANG Shengdong1,3. Adjustable topological transmission of elastic waves in MR elastic matrix-based phonon crystals[J]. Journal of Vibration and Shock, 2021, 40(21): 16-24

参考文献

[1] Klitzing K, Dorda G, Pepper M. New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance[J]. Physical review letters, 1980, 45(6): 494.
[2] Laughlin R B. Anomalous quantum Hall effect: an incompressible quantum fluid with fractionally charged excitations[J]. Physical Review Letters, 1983, 50(18): 1395..
[3] Kane C L, Mele E J. Quantum spin Hall effect in graphene[J]. Physical review letters, 2005, 95(22): 226801.
[4] Bernevig B A, Hughes T L, Zhang S C. Quantum spin Hall effect and topological phase transition in HgTe quantum wells[J]. science, 2006, 314(5806): 1757-1761.
[5] Hsieh D, Qian D, Wray L, et al. A topological Dirac insulator in a quantum spin Hall phase[J]. Nature, 2008, 452(7190): 970-974.
[6] Hasan M Z, Kane C L. Colloquium: topological insulators[J]. Reviews of modern physics, 2010, 82(4): 3045.
[7] Qi X L, Zhang S C. Topological insulators and superconductors[J]. Reviews of Modern Physics, 2011, 83(4): 1057..
[8] Zhu Y, Hu J, Fan X, et al. Fine manipulation of sound via lossy metamaterials with independent and arbitrary reflection amplitude and phase[J]. Nature Communications, 2018, 9(1): 1632-1632.
[9] Peng Y G, Qin C Z, Zhao D G, et al. Experimental demonstration of anomalous Floquet topological insulator for sound[J]. Nature communications, 2016, 7(1): 1-8.
[10] He C, Ni X, Ge H, et al. Acoustic topological insulator and robust one-way sound transport[J]. Nature physics, 2016, 12(12): 1124-1129.
[11] Lu J, Qiu C, Ye L, et al. Observation of topological valley transport of sound in sonic crystals[J]. Nature Physics, 2017, 13(4): 369-374.
[12] Khanikaev A B, Fleury R, Mousavi S H, et al. Topologically robust sound propagation in an angular-momentum-biased graphene-like resonator lattice[J]. Nature communications, 2015, 6(1): 1-7.
[13] Yang Z, Gao F, Shi X, et al. Topological acoustics[J]. Physical review letters, 2015, 114(11): 114301.
[14] Ni X, He C, Sun X C, et al. Topologically protected one-way edge mode in networks of acoustic resonators with circulating air flow[J]. New Journal of Physics, 2015, 17(5): 053016.
[15] Wang P, Lu L, Bertoldi K. Topological phononic crystals with one-way elastic edge waves[J]. Physical review letters, 2015, 115(10): 104302.
[16] Mei J, Chen Z, Wu Y. Pseudo-time-reversal symmetry and topological edge states in two-dimensional acoustic crystals[J]. Scientific reports, 2016, 6(1): 1-7.
[17] Zhang Z, Wei Q, Cheng Y, et al. Topological creation of acoustic pseudospin multipoles in a flow-free symmetry-broken metamaterial lattice[J]. Physical review letters, 2017, 118(8): 084303..
[18] Peng Y G, Qin C Z, Zhao D G, et al. Experimental demonstration of anomalous Floquet topological insulator for sound[J]. Nature communications, 2016, 7(1): 1-8..
[18] Xiao M, Ma G, Yang Z, et al. Geometric phase and band inversion in periodic acoustic systems[J]. Nature Physics, 2015, 11(3): 240-244.
[19] Wang Z, Chong Y D, Joannopoulos J D, et al. Reflection-free one-way edge modes in a gyromagnetic photonic crystal[J]. Physical review letters, 2008, 100(1): 013905.
[20] Wang Z, Chong Y, Joannopoulos J D, et al. Observation of unidirectional backscattering-immune topological electromagnetic states[J]. Nature, 2009, 461(7265): 772-775.
[21] Lu J, Qiu C, Ke M, et al. Valley vortex states in sonic crystals[J]. Physical review letters, 2016, 116(9): 093901.
[22] Lu J, Qiu C, Ye L, et al. Observation of topological valley transport of sound in sonic crystals[J]. Nature Physics, 2017, 13(4): 369-374.
[24] C. He,  X. Ni, H. Ge,  et  al. Chen. Acoustic  topological insulator  and  robust  one-way  sound transport. Nature Physics, 2016, 12, 1124.
[22] Vila J, Pal R K, Ruzzene M. Observation of topological valley modes in an elastic hexagonal lattice[J]. Physical Review B, 2017, 96(13): 134307.
[23] Goffaux C, Vigneron J P. Theoretical study of a tunable phononic band gap system[J]. Physical Review B, 2001, 64(7): 075118.
[24] Wang X F, Kushwaha M S, Vasilopoulos P. Tunability of acoustic spectral gaps and transmission in periodically stubbed waveguides[J]. Physical Review B, 2001, 65(3): 035107.
[28] Peng Y, Qin C, Zhao D, et al. Experimental demonstration of anomalous Floquet topological insulator for sound[J]. Nature Communications, 2016, 7(1): 13368-13368.
[25] Zhou X, Xu Y, Liu Y, et al. Extending and lowering band gaps by multilayered locally resonant phononic crystals[J]. Applied Acoustics, 2018, 133: 97-106.
[26] Yeh J Y. Control analysis of the tunable phononic crystal with electrorheological material[J]. Physica B: Condensed Matter, 2007, 400(1-2): 137-144.
[27] Yang Z, Sheng P, Yang M, et al. Active control of membrane-type acoustic metamaterial: U.S. Patent 9,659,557[P]. 2017-5-23.
[28] Ginder J M, Clark S M, Schlotter W F, et al. Magnetostrictive phenomena in magnetorheological elastomers[J]. International Journal of Modern Physics B, 2002, 16(17n18): 2412-2418.
[29] Chen L, Gong X, Jiang W, et al. Investigation on magnetorheological elastomers based on natural rubber[J]. Journal of Materials Science, 2007, 42(14): 5483-5489.
[30] Chen X, Xu X, Ai S, et al. Active acoustic metamaterials with tunable effective mass density by gradient magnetic fields[J]. Applied Physics Letters, 2014, 105(7): 071913.
[31] Xu Z, Tong J, Wu F. Magnetorheological elastomer vibration isolation of tunable three-dimensional locally resonant acoustic metamaterial[J]. Solid State Communications, 2018, 271: 51-55..
[32] 刘少刚,赵跃超,赵丹.基于磁流变弹性体多包覆层声学超材料带隙及传输谱特性[J].物理学报,2019,68(23):154-166
LIU S G,ZHAO Y C,PENG D.Acoustic metamaterial band gap and transmission spectrum characteristics based on MRR elastomer Multicladding [J]. Acta Physica Sinica,2019,68(23):154-166.
[33] Wu B, He C, Wei R, et al. Research on two-dimensional phononic crystal with magnetorheological material[C]//2008 IEEE Ultrasonics Symposium. IEEE, 2008: 1484-1486.
[34] Xu Z, Wu F, Guo Z. Shear-wave band gaps tuned in two-dimensional phononic crystals with magnetorheological material[J]. Solid state communications, 2013, 154: 43-45.
[35] 许振龙,吴福根,黄亮国.二维声子晶体理论在磁流变隔振支座中的应用[J].人工晶体学报. 2014, 43(7): 1862-1866.
Xu ZL; Wu FG; Guo ZN. Application of two-dimensional phononic crystal theory in magnetorheological vibration isolation bearing[J]Artificial crystallography.2014, 43(7): 1862-1866.
[36] Xu Z, Wu F. Elastic band gaps of magnetorheological elastomer vibration isolators[J]. Journal of Intelligent Material Systems and Structures, 2015, 26(7): 858-864.
[37] Bayat A, Gordaninejad F. A magnetically field-controllable phononic crystal[C]//Active and Passive Smart Structures and Integrated Systems 2014. International Society for Optics and Photonics, 2014, 9057: 905713.
[38] Bayat A, Gordaninejad F. Band-gap of a soft magnetorheological phononic crystal[J]. Journal of vibration and acoustics, 2015, 137(1).
[39] Bellan C, Bossis G. Field dependence of viscoelastic properties of MR elastomers[J]. International Journal of Modern Physics B, 2002, 16(17n18): 2447-2453.
[40] Davis L C. Model of magnetorheological elastomers[J]. Journal of Applied Physics, 1999, 85(6): 3348-3351.
[41] 余淼, 严小锐, 毛林章. 一种刚度、阻尼可控的新智能材料— 磁流变弹性体[J]. 材料导报, 2007, 21(7): 103–107.
Yu M, Yan X R, Mao L Z. A newsmart material with controllable stiffness and dampingmagnetorheological elastomer[J]. Materials Review, 2007,21(7): 103–107. .
[42] 王刚,温激鸿,刘耀宗,郁殿龙,温熙森.大弹性常数差二维声子晶体带隙计算中的集中质量法[J].物理学报,2005(03):1247-1252.
WANG G,WENG J H,YU D L,WENG X S.Lumped mass method for calculation of band gaps between two dimensional phonon crystals with large elastic constant Difference [J]. Acta Physica Sinica,2005(03):1247-1252.
[43] 温熙森. 声子晶体[M]. 北京: 国防工业出版社, 2009: 61-62
WENG X S,Phonon crystal [M]. Beijing,National Defense Industry Press,2009: 61-62.
[44] Kushwaha M S, Halevi P, Martinez G, et al. Theory of acoustic band structure of periodic elastic composites[J]. Physical Review B, 1994, 49(4): 2313..
[45] Huo S, Chen J, Huang H, et al. Simultaneous multi-band valley-protected topological edge states of shear vertical wave in two-dimensional phononic crystals with veins[J]. Scientific reports, 2017, 7(1): 1-8.

PDF(3542 KB)

387

Accesses

0

Citation

Detail

段落导航
相关文章

/