分数阶半主动颗粒阻尼隔振系统动力学特性分析

薛程1,夏兆旺1,2,卢志伟1,鞠福瑜1,茅凯杰3

振动与冲击 ›› 2021, Vol. 40 ›› Issue (21) : 194-200.

PDF(1784 KB)
PDF(1784 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (21) : 194-200.
论文

分数阶半主动颗粒阻尼隔振系统动力学特性分析

  • 薛程1,夏兆旺1,2,卢志伟1,鞠福瑜1,茅凯杰3
作者信息 +

Dynamic characteristics analysis of vibration isolation system with fractional-order semi-active particle damper

  • XUE Cheng, XIA Zhaowang1,2, LU Zhiwei1, JU Fuyu1, MAO Kaijie3
Author information +
文章历史 +

摘要

针对半主动颗粒阻尼器建立其分数阶模型,通过试验及参数识别确定了分数阶参数与实际物理量之间的定量关系。试验结果表明:分数阶系数与颗粒填充率之间满足线性关系,而分数阶阶次与外圈电流满足三次多项式关系。随后,研究了一类含分数阶半主动颗粒阻尼器的单自由度隔振系统,通过平均法求解了其解析解,并基于Grünwald-Letnikov分数阶定义得到其离散化数值解;对比表明解析解和数值解具有良好的一致性。最后,分析了分数阶参数对隔振系统稳态响应的影响规律,研究结果表明:随着分数阶阶次的增大或是分数阶系数的减小,系统稳态响应幅值逐渐减小;通过观察幅频响应曲线可知阶次值的变化会引发“频移”现象,同时推导出了分数阶系统的最优阶次值为1.47。

Abstract

This article established a fractional-order model for semi-active particle damper and the relationship between fractional-order parameters and its actual physical parameters is identified by experiments. The experimental results show that the fractional-order coefficient has a linear relation with particle filling rates and the fractional order has a cubic polynomial relation with the coil current. Then, this article researched a SDOF vibration isolation system including fractional-order semi-active particle damper, whose analytical solution is obtained by averaging method and numerical solution is got based on Grünwald-Letnikov Fractional-order definition. The comparison between the analytical solution and the numerical solution shows that they have a great consistency. Finally, this article discussed the influences of fractional parameters on the steady-state response amplitude of the system. The results found that with the increase of fractional order or the decrease of fractional-order coefficient, the steady-state response amplitude of the system would show a downward trend. The change of fractional order will lead the natural frequency to change and the optimal value of fractional order is 1.47.  

关键词

:半主动颗粒阻尼;分数阶隔振系统;平均法;Grü / nwald-Letnikov分数阶定义;参数优化;

Key words

semi-active particle damping;fractional-order vibration isolation system;averaging method;Grü / nwald-Letnikov fractional-order definition;Parameter optimization

引用本文

导出引用
薛程1,夏兆旺1,2,卢志伟1,鞠福瑜1,茅凯杰3. 分数阶半主动颗粒阻尼隔振系统动力学特性分析[J]. 振动与冲击, 2021, 40(21): 194-200
XUE Cheng, XIA Zhaowang1,2, LU Zhiwei1, JU Fuyu1, MAO Kaijie3. Dynamic characteristics analysis of vibration isolation system with fractional-order semi-active particle damper[J]. Journal of Vibration and Shock, 2021, 40(21): 194-200

参考文献

[1] 胡溧, 涂迪, 杨梁,等. 电磁场下颗粒阻尼动态特性试验研究[J]. 振动与冲击, 2017, 36(4):41-46.
Hu L, Tu D, Yang L, et al. Experimental investigation on dynamic properties of particle damping under electromagnetic field[J]. Journal of Vibration and Shock, 2017, 36(4):41-46.
[2] Xia Z, Mao K, Wei S. Application of genetic algorithmsupport vector regression model to predict damping of cantilever beam with particle damper[J]. Journal of Low Frequency Noise, Vibration and Active Control, 2017,36(2):138-147
[3] Hu L, Shi Y, Yang Q, et al. Sound reduction at a target point inside an enclosed cavity using particle dampers[J]. Journal of Sound and Vibration, 2016, 384: 45-55.
[4] Xia Z, Mao K, Wang X, et al. Study on semi-active particle damping technology for offshore platform truss structure[J]. Journal of Vibroengineering,2016, 18(7):4248-4260.
[5] Shen Y, Wen S, Li X, et al. Dynamical analysis of fractional-order nonlinear oscillator by incremental harmonic balance method[J]. Nonlinear Dynamics, 2016, 85(3): 1457-1467.
[6] Niu J, Shen Y, Yang S, et al. Analysis of Duffing oscillator with time-delayed fractional-order PID controller[J]. International Journal of Non-Linear Mechanics, 2017, 92:66-75.
[7] 顾晓辉, 杨绍普, 申永军,等. 分数阶Duffing振子的组合共振[J]. 振动工程学报, 2017, 30(1):28-32.
   Gu X, Yang S, Shen Y, et al. Combination resonance of Duffing oscillator with fractional-order derivative[J]. Journal of Vibration Engineering, 2017, 30(1):28-32.
[8] 姜源, 申永军, 温少芳,等. 分数阶达芬振子的超谐与亚谐联合共振[J]. 力学学报, 2017, 49(5):1008-1019.
Jiang Y, Shen Y, Wen S, et al. Super-harmonic and sub-harmonic simultaneous resonances of fractional-order Duffing oscillator[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(5):1008-1019.
[9] Shen Y, Peng H, Li X, et al. Analytically optimal parameters of dynamic vibration absorber with negative stiffness[J]. Mechanical Systems & Signal Processing, 2017, 85:193-203.
[10] 李占龙, 孙大刚, 宋勇,等. 基于分数阶导数的黏弹性悬架减振模型及其数值方法[J]. 振动与冲击, 2016, 35(16):123-129.
    Li Z, Sun D, Song Y, et al. A fractional calculus-based vibration suppression model and its numerical solution for viscoelastic suspension[J]. Journal of Vibration and Shock, 2016, 35(16):123-129.
[11] Jia H, Chen Z, Qi G. Chaotic Characteristics Analysis and Circuit Implementation for a Fractional-Order System[J]. IEEE Transactions on Circuits & Systems I Regular Papers, 2017, 61(3):845-853.
[12] Zeng C, Yang Q, Wang J. Chaos and mixed synchronization of a new fractional-order system with one saddle and two stable node-foci[J]. Nonlinear Dynamics, 2011, 65(4): 457-466.
[13] 温少芳, 申永军, 杨绍普. 分数阶时滞反馈对Duffing振子动力学特性的影响[J]. 物理学报, 2016, 65(9): 1-10.
    Wen S, Shen Y, Yang S. Dynamical analysis of Duffing oscillator with fractional-order feedback with time delay[J]. Acta Phys. Sin. 2016, 65(9): 1-10.
[14] 杨旭, 梁英杰, 孙洪广,等. 空间分数阶非Newton流体本构及圆管流动规律研究[J]. 应用数学和力学, 2018, 39(11):1213-1226.
    Yang X, Liang Y, Sun H, et al. A study on the constitutive relation and the flow of spatial fractional Non-Newtonian fluid in circular pipes[J]. Applied Mathematics and Mechanics, 2018, 39(11):1213-1226.
[15] 彭海波, 申永军, 杨绍普. 一种含负刚度元件的新型动力吸振器的参数优化[J]. 力学学报, 2015, 47(2):320-327.
    Peng H, Shen Y, Yang S. Parameters optimization of a new type of dynamic vibration absorber with negative stiffness[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(2):320-327.
[16] Wen S, Shen Y, Yang S, et al. Dynamical response of Mathieu–Duffing oscillator with fractional-order delayed feedback[J]. Chaos Solitons & Fractals, 2017, 94:54-62.
[17] Wang X, Liu X, Shan Y, et al. Analysis and Optimization of The Novel Inerterbased Dynamic Vibration Absorbers[J]. IEEE Access, 2018:1-1.
[18] 薛程, 许祥曦, 苏战发, 等. 基于稳态能量流法识别半主动颗粒阻尼损耗因子的实验[J]. 航空动力学报, 2020,35(1): 60-65.
Xue C, Xu X, Su Z, et al. Experiment of identifying semi-active particle damping loss factor based on steady-state energy flow method[J]. Journal of Aerospace Power, 2020,35(1):60-65.
[19] 杨建华, 刘后广, 程刚. 一类五次方振子系统的叉形分叉及振动共振研究[J]. 物理学报, 2013, 62(18): 52-59.
    Yang J, Liu H, Cheng G. The pitchfork bifurcation and vibrational resonance in a quintic oscillator[J]. Acta Phys. Sin. 2013, 62(18): 52-59.
[20] 杨建华, 朱华. 不同周期信号激励下分数阶线性系统的响应特性分析[J]. 物理学报, 2013, 62(2): 366-372.
    Yang J, Zhu H. The response property of one kind of fractional-order linear system excited by different periodical signals[J]. Acta Phys. Sin. 2013, 62(2): 366-372.
[21] Gabsi H, Ardjouni A, Djoudi A. New stability conditions for the delayed liénard nonlinear equation via fixed point technique[J]. Azerbaijan Journal of Mathematics, 2018, 8(1): 15-34.

PDF(1784 KB)

Accesses

Citation

Detail

段落导航
相关文章

/