针对目前螺栓轴向应力超声测量技术中存在的测量繁琐、测量限制条件较多等问题,提出基于超声模式转换的螺栓轴向应力测量法。在分析加载螺栓中的超声波传播规律的基础上,通过非线性声学理论和弹性力学理论推导了使用纵波与模式转换波声时比计算螺栓轴向应力的表达式,采用基于Gabor变换和高斯经验模型的渡越时间计算方法得到了纵波和模式转换波的准确渡越时间,克服了信号中的混叠和畸变。搭建了螺栓轴向应力超声测量实验平台,使用上述方法以及常用的纵横波声时比法对多组不同材料和规格的粗牙半螺纹螺栓进行对比标定和测量实验。实验证明,该方法具有测量精度高、测量流程简洁的特点。
Abstract
In order to solve the problems existing in the current bolt axial stress ultrasonic measurement technique, such as too cumbersome measurement procedures and narrow application range, a new ultrasonic evaluation method of bolt axial stress based on mode-converted wave using a single transducer is proposed. Firstly, the propagation law of ultrasonic wave in a loading bolt is analyzed. Then, the expression for calculating the axial stress using the time ratio of the longitudinal wave to mode converted wave is derived based on the theory of nonlinear acoustics and elasticity. Next, the accurate transit time of the converted wave is obtained by the calculation model based on Gabor transform and Gaussian empirical model, which overcomes the aliasing and distortions in ultrasonic signals. The experimental platform of ultrasonic calibration/ measurement of bolt axial stress was built, and the proposed method and the commonly used method were compared through estimating the axial stress of bolts with different materials and specifications. The experimental results show that the accuracy of this method is higher than the traditional one, and can greatly simplifies the measurement process.
关键词
超声 /
模式转换 /
Gabor变换 /
轴向应力 /
螺栓
{{custom_keyword}} /
Key words
ultrasonic /
mode conversion /
Gabor expansion /
axial stress /
bolt
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Gu Z G, Sun Z. Piezoelectric Impedance Based Prestress Force Monitoring for PSC Beam[J]. Advanced Materials Research, 2011, 255-260:742-746.
[2] Joshi S G,Pathare R G . Ultrasonic instrument for measuring bolt stress[J]. Ultrasonics,1984, 22(6): 261-269
[3]孙朝明, 王增勇, 李建文, 等. 声弹效应测量螺栓轴向应力的有限元计算分析[J]. 振动与冲击, 2019, 38(13): 164-171.
Sun Chao-Yang, Wang Zhong-Yong, Li Jian-Wen. Finite element analysis for bolt axial stress measurement based on acoustoelastic effect[J]. Journal of Vibration and Shock, 2019, 38(13): 164-171.
[4]张俊, 顾临怡, 钱筱林, et al. 钢结构工程中高强度螺栓轴向应力的超声测量技术[J]. 机械工程学报, 2006, 042(002): 216-220.
Zhang Jun, Gu lin-Yi, Qian Xiao-Lin. Ultrasonic measurement of high strength bolt axial tension in steel construction[J]. Journal of Mechanical Engineering, 2006, 042(002):216-220.
[5]Yasui H, Tanaka H, Fujii I, Kawashima K. Ultrasonic measurement of axial stress in short bolt with consideration of nonlinear deformation. JSME Int J Ser A 1999, 42(1): 111–118.
[6]江泽涛,张少钦,胡景春,等. 微机化的纵横波螺栓轴向应力检测仪研制[J]. 固体力学学报, 2001, 22(4): 415-420.
Zetao J, Shiming Z. A new type of microcomputer based ultrasonic longitudinal waves and transverse wave instrument for measurement of stress in bolt[J]. Acta mechanica solida sinica, 2001, 22(4): 415-420.
[7]徐春广, 李骁, 潘勤学, 等. 螺栓拉应力超声无损检测方法[J]. 应用声学, 2016, 33(02): 102-106.
Xu C, Li X, Pan Q. Bolt stress measurements by ultrasonic non-destructive methods[J]. Journal of Applied Acoustics, 2014, 33(2):102-106.
[8]Ding X, Wu X, Wang Y. Bolt axial stress measurement based on a mode-converted ultrasound method using an electromagnetic acoustic transducer[J]. Ultrasonics, 2014, 54(3): 914-920.
[9]Kim N, Hong M. Measurement of axial stress using mode-converted ultrasound[J]. NDT and E International, 2009, 42(3): 164-169.
[10]Rose J L, Nagy P B . Ultrasonic Waves in Solid Media[J]. Journal of the Acoustical Society of America, 2000, 107(4):1807-1815.
[11]Demirli R and Saniie J. Model-based estimation of ultrasonicechoes Part I: analysis and algorithms[J]. IEEE Transactionson Ultrasonic, Ferro Electrics and Frequency Control, 2001, 48(3): 787-802.
[12]王耀俊. 固体中超声波传播的非线性畸变[J]. 物理, 1985, (12): 724-725+733.
Wang Yao-Jun. Nonlinear distortion of ultrasonic propagation in solids[J]. Physics, 1985, (12): 724-725+733.
[13]Angrisani L,Baccigalupi A,Moriello R S L . A measurement method based on Kalman filtering for ultrasonic time-of-flight estimation[J]. IEEE Transactions on Instrumentation and Measurement, 2006, 55(2): 442-448.
[14]王大为, 王召巴, 陈友兴, 等. 基于双高斯衰减模型的超声回波处理方法[J]. 物理学报, 2019, 68(08): 168-176.
Wang Da-Wei, Wang Zhao-Ba, Chen You-Xing, et al. Dual Gaussian attenuation model of ultrasonic echo and its parameter estimation[J]. Acta Physica Sinica, 2019, 68(08): 168-176.
[15]卢振坤, 杨萃, 王金炜. 基于Gabor变换的超声回波信号时频估计[J]. 电子与信息学报, 2013, 000(003): 152-157.
Lu Zheng-Kun, Yang Cui, Wang Jin-Yi. Gabor Transform Based Time-frequency Estimation of Ultrasonic Echo Signal[J]. Journal of Electronics Information Technology, 2013, 000(003): 152-157.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}