亚音速流场中曲线纤维变刚度复合材料壁板颤振特性研究

段静波,徐步青

振动与冲击 ›› 2021, Vol. 40 ›› Issue (21) : 258-265.

PDF(2039 KB)
PDF(2039 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (21) : 258-265.
论文

亚音速流场中曲线纤维变刚度复合材料壁板颤振特性研究

  • 段静波,徐步青
作者信息 +

Flutter characteristics of curved fiber variable-stiffness composite panels in subsonic flow field

  • DUAN Jingbo, XU Buqing
Author information +
文章历史 +

摘要

近年出现的曲线纤维变刚度层合板应用于高速列车壁板结构轻量化设计时,需要考虑变刚度壁板在亚音速流场中的气动弹性问题。本文基于Mindlin厚板理论和势流流动理论分别描述壁板结构变形和亚音速气动力,根据虚功原理和有限元法建立了曲线纤维变刚度复合材料壁板的颤振模型,进而采用复模态理论、Newmark法分别从频域、时域对复合变刚度壁板颤振方程进行求解。在验证方法正确性和收敛性的基础上,进行了曲线纤维铺设关键参数对复合变刚度壁板颤振特性的影响规律研究。结果表明,通过调整曲线纤维路径可以改变复合变刚度壁板的颤振临界速度,而且曲线纤维丝束角改变可增大复合壁板颤振的设计空间。

Abstract

The aeroelastic flutter in subsonic flow needs to be considered when composite variable-stiffness panels with curvilinear fibers are applied to high-speed and lightweight designation of train structures. The classical thick theory along with the Mindlin plate is used for structural modeling and the potential flow theory is for aerodynamic modeling. Then, the aeroelastic model of composite variable-stiffness panels with curvilinear fibers is established based on the principle of virtual work and the finite element method, which is respectively solved by the complex mode theory in frequency domain and the Newmark method in time domain. After the validity and convergence of the presented method is verified, the flutter behaviors under different ply orientations are investigated. Numerical results demonstrate that the critical dynamic pressure changes by varying the path orientations of curvilinear fibers, which can increase the design space of composite panel flutter.

关键词

颤振 / 曲线纤维 / 变刚度 / 复合材料壁板 / 亚音速气流

Key words

flutter / curvilinear fibers / variable-stiffness / composite panels / subsonic flow

引用本文

导出引用
段静波,徐步青. 亚音速流场中曲线纤维变刚度复合材料壁板颤振特性研究[J]. 振动与冲击, 2021, 40(21): 258-265
DUAN Jingbo, XU Buqing. Flutter characteristics of curved fiber variable-stiffness composite panels in subsonic flow field[J]. Journal of Vibration and Shock, 2021, 40(21): 258-265

参考文献

[1] Hyper M W, Charette R F. Use of curvilinear fiber format in composite structure design[J]. AIAA Journal, 1991, 29(6):1011-1015.
[2] Gűrdal Z, Tatting B F, Wu C K. Variable-stiffness composite panels: Effects of stiffness variation on the in-plane and buckling response[J]. Composites: Part A, 2008, 39(5): 911-922.
[3] Lopes C S, Gűrdal Z, Camanho P P. Variable-stiffness composite panels: Buckling and first-ply failure improvements over straight-fiber laminates[J]. Computers and Structures, 2008, 86(9): 897-907.
[4] Groh R M J, Weaver P M. Buckling analysis of variable angle tow, variable thickness panels with transverse shear effects [J]. Computer Structures, 2014,107:482-493.
[5] Mahdi A N, Larry L, Damiano P. Size-dependent behavior of laminates with curvilinear fibers made by automated fiber placement [J]. Engineering Composite Materials, 2015; 22(2): 157-163.
[6] Hao P, Yuan X J, Liu C, et al. An integrated framework of exact modeling,isogeometric analysis and optimization for variable stiffness composite panels[J]. Computer Methods in Applied Mechanics and Engineering, 2018, 339:205-238.
[7] 孙士平, 张冰, 邓同强, 胡政. 复合载荷作用变刚度复合材料回转壳屈曲优化[J].复合材料学报, 2019, 36(4): 1052-1061.
SUN Shi-ping, ZHANG Bing, DENG Tong-qiang, HU Zheng. Bucking optimization of variable stiffness composite rotary shell under combined loads[J]. Acta Materiae Compositae Sinica, 2019, 36(4): 1052-1061.
[8] Hamed A,Pedro R, Moura M. Large deflflection and stresses in variable stiffness composite laminates with curvilinear fibres[J]. International Journal of Mechanical Sciences, 2013, 73 :14-26.
[9] Houmat A. Nonlinear free vibration of laminated composite rectangular plates with curvilinear fibers[J]. Composite Structures, 2013,106: 211-224.
[10]谭 萍, 聂国隽. 曲线纤维增强复合材料圆环板的非轴对称弯曲问题[J]. 工程力学, 2016, 33(3):239-248.
TAN Ping, NIE Guo-jun. Asymmetric bending of curvilinear-fiber reinforced composite annular plates[J]. Engieering Mechanics, 2016, 33(3):239-248.
[11] 马洪涛. 变刚度复合材料层合板的力学性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2012.
MA Hong-tao. Study of mechanical behaviors of variable-stiffness composite laminates[D]. Harbin: Harbin Institute of Technology, 2012.
[12] 聂国隽,朱佳瑜. 纤维曲线铺放的复合材料层合板的自由振动分析[J].力学季刊, 2016, 32(6):274-284.
NIE Guo-jun, ZHU Jia-yu. Free vibration analysis of composite laminates with curvilinear fibres. Chinese Quarterly of Mechanics[J]. 2016, 32(6):274-284.
[13] 马成. 复合材料纤维曲线铺放层合板的减振性能优化[D].南京:南京航空航天大学硕士学位论文, 2019.
MA Cheng. Analysis of vibration reduction performance of composite fiber curved laminated panels[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019.
[14] 杜宇, 杨涛, 戴维蓉, 李志猛, 牛雪娟. 纤维曲线铺放的变刚度复合材料损伤失效试验研究[J]. 固体火箭技术, 2013,36(6): 826-831.
DU Yu, YANG Tao, DAI Wei-rong, LI Zhi-meng, NIU Xue-juan. Experimental research of damaging failure of variable-stiffness composite[J]. Journal of Solid Rocket Technology, 2013, 36(6):826-831.
[15] Vahid K, Jamshid F. Supersonic panel flutter of variable stiffness composite laminated skew panels subjected to yawed flow by using NURBS-based isogeometric approach [J]. Journal of Fluids and Structures, 2018,82:198-214.
[16] 欧阳小穗, 刘毅. 高速流场中变刚度复合材料层合板颤振分析[J]. 航空学报, 2018, 39(3): 221539.
OUYANG Xiao-sui, LIU Yi. Panel flutter of variable stiffness composite laminates in supersonic flow[J]. Acta Aeronautica et Astronautics Sinica, 2018, 39(3):221539.
[17] Touraj F, Davood A, Hasan K. Flutter improvement of a thin walled wing-engine system by applying curvilinear fiber path[J]. Aerospace Science and Technology, 2019, 93:105353.
[18] Yao G, Li F. Chaotic motion of a composite laminated plate with geometric nonlinearity in subsonic flow[J]. International Journal of Non-Linear Mechanics, 2013, 50: 81-90.
[19] Li Peng, Yang Y, Shi H. Hopf and two-multiple semi-stable limit cycle bifurcations of a restrained plate subjected to subsonic flow[J]. Journal of Sound and Vibration, 2015, 335: 286-303.
[20] 袁枭桀. 基于等几何的变刚度层合板屈曲分析及优化设计[D]. 大连:大连理工大学硕士毕业论文, 2018.
YUAN Xiao-jie. Bucking and optimization of variable-stiffness composite panels based on isogeonetric analysis[D]. Dalian: Dalian University of Technoligy, 2018.
[21] 谌胜. 高速列车结构气动弹性问题分析[D]. 哈尔滨:哈尔滨工业大学硕士毕业论文, 2012.
SHEN Sheng. Aeroelastic analysis of high-speed train structures[D]. Harbin: Harbin Institute of Technology, 2012.

PDF(2039 KB)

375

Accesses

0

Citation

Detail

段落导航
相关文章

/