可液化地基地下结构地震反应特征简化有效应力分析

赵凯,王秋哲,王彦臻,庄海洋,陈国兴

振动与冲击 ›› 2021, Vol. 40 ›› Issue (21) : 39-46.

PDF(2468 KB)
PDF(2468 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (21) : 39-46.
论文

可液化地基地下结构地震反应特征简化有效应力分析

  • 赵凯,王秋哲,王彦臻,庄海洋,陈国兴
作者信息 +

Effects of soil-underground structure interaction on seismic response of liquefiable sit around underground structure

  • ZHAO Kai, WANG Qiuzhe, WANG Yanzhen, ZHUANG Haiyang, CHEN Guoxing
Author information +
文章历史 +

摘要

采用适宜于将一维应力–应变关系向三维空间扩展的等效剪应变算法和加卸载判据,构造了三维应力空间中的Davidenkov本构模型;基于Biot动力固结方程以及对剪应力和正应力差耦合剪切引起的不可逆性体应变的数学描述,建立了一个可描述可液化地基中土-地下结构相互作用的有效应力分析方法。基于FLAC3D软件平台,实现了该有效应力算法,适用于二维和三维可液化场地土-地下结构体系非线性地震效应分析。采用不同模型对饱和砂土不排水循环扭剪试验进行了模拟,对比结果表明:相较于单一循环直剪试验结果建立的修正Byrne模型,本文方法可以更为合理表征复杂动应力路径下饱和砂土的孔压发展规律及液化过程。类似地,进一步分析了某可液化地基中隧道周围场地地震反应规律,探究了可液化地基-地下结构的相互作用机理。结果表明:地震波垂直向上传播引起远场土体保持正应力不变条件下规则的往复水平剪应力,当地震波传播至在土-结构接触界面时发生反射与透射现象,结构周围土体处于往复剪应力和正应力差耦合剪切状态,显著加大了结构孔压的累积速度和液化区域。采用修正Byrne模型可以较好预测远场的动力响应,却低估了结构周围场地的超孔压累积速度和液化区域,本文方法能够较好反映土-地下结构相互作用对结构周围场地动力响应的影响。

Abstract

With the equivalent shear strain algorithm and the loading-unloading criterion, the Davidenkov constitutive model is established in the 3D stress space. Incorporating the volumetric strain model under bi-directional cyclic shearing and the Biot dynamic consolidation equations, we present an effective stress analysis method to capture the soil-structure interaction in liquefiable site. The proposed method is implemented in the FLAC3D platform for nonlinear seismic analysis of large-scale soil-structure system. Different models are employed to simulate the undrained cyclic torsional shear tests of saturated sand, and the results indicate that compared to the modified Byrne model built upon the cyclic direct shear tests, the proposed method is more capable of simulating the liquefaction process of saturated sand under complex stress paths. Similarly, the seismic response of a rectangular tunnel in liquefiable site is further analyzed, and the soil-structure interaction mechanism is explored. According to the results, the vertical propagation of seismic wave leads to regular reciprocating shear stress in the far field, keeping the normal stress unchanged; the reflection and projection may occur when the wave propagates to the soil-structure interface, and the surrounding soil is under bi-directional cyclic shearing, amplifying the rate of excess pore pressure and the liquefied zone. The modified Byrne model can well predict the seismic response at the far field, however underestimates the accumulation rate of excess pore pressure and liquefied zone around the structure. The proposed method is capable to capture the influence of soil-structure interaction on the dynamic response of the liquefiable site around the underground structure.

关键词

可液化场地 / 土-结构相互作用 / 有效应力分析方法 / 地震反应

Key words

 liquefiable site / soil-structure interaction / effective stress analysis / seismic response

引用本文

导出引用
赵凯,王秋哲,王彦臻,庄海洋,陈国兴. 可液化地基地下结构地震反应特征简化有效应力分析[J]. 振动与冲击, 2021, 40(21): 39-46
ZHAO Kai, WANG Qiuzhe, WANG Yanzhen, ZHUANG Haiyang, CHEN Guoxing. Effects of soil-underground structure interaction on seismic response of liquefiable sit around underground structure[J]. Journal of Vibration and Shock, 2021, 40(21): 39-46

参考文献

[1] 陈国兴, 陈苏, 杜修力, 等. 城市地下结构抗震研究进展[J]. 防灾减灾工程学报, 2016, 26(1): 1-23.
CHEN Guo-xing, CHEN Su, DU Xiu-li, et al. Review of Seismic Damage,Model Test,Available Design and Analysis Methods of Urban Underground Structures:Retrospect and Prospect[J]. Journal of Disaster Prevention and Mitigation Engineering, 2016, 26(1): 1-23.
[2] 唐柏赞, 李小军, 陈苏, 等. 可液化地基-非规则截面地铁车站地震变形研究[J]. 振动与冲击, 2020, 39(11): 217-225.
TANG Bai-zang, LI Xiao-jun, CHEN Su, et al. Seismic deformation characteristics of liquefaction soil-irregular section underground structure[J]. Journal of Vibration and Shock, 2020, 39(11): 217-225.
[3] 权登州, 王毅红, 马蓬渤, 等. 黄土地区地铁车站地震反应的频域分析及空间效应[J]. 振动与冲击, 2016, 35(21): 102-112.
QUAN Deng-zhou, WANG Yi-hong, MA Peng-bo, et al. Spatial effects and frequency domain analysis for seismic responses of subway station in loess area[J]. Journal of Vibration and Shock, 2016, 35(21): 102-112.
[4] 权登州, 王毅红, 叶丹, 等. 黄土与地铁车站动力相互作用模型的水平位移及沉降分析[J]. 振动与冲击, 2017, 36(17): 111-119.
QUAN Deng-zhou, WANG Yi-hong, YE Dan, et al. Horizontal displacement and settlement analysis for loess subway station dynamic interaction model[J]. Journal of Vibration and Shock, 2017, 36(17): 111-119.
[5] 杨澄宇, 蔡雪松, 袁勇. 地铁车站钢筋混凝土中柱试件抗震混合试验研究[J]. 振动与冲击, 2020, 39(15): 126-132.
YANG Cheng-yu, CAI Xue-song, YUAN Yong. Hybrid simulation for aseismic performance of subway station with its RC central column as test specimen[J]. Journal of Vibration and Shock, 2020, 39(15): 126-132.
[6] 王建宁, 马国伟, 窦远明, 等. 异跨框架式地铁地下车站结构抗震性能水平与评价方法研究[J]. 振动与冲击, 2020, 39(10): 92-100.
WANG Jian-ning, MA Guo-wei, DOU Yuan-ming, et al. Performance levels and evaluation method for seismic behaviors of a large-scale underground subway station with unequal-span frame[J]. Journal of Vibration and Shock, 2020, 39(10): 92-100.
[7] 王建宁, 付继赛, 庄海洋, 等. 可液化场地中复杂异跨地铁地下车站结构的地震反应分析[J]. 振动与冲击, 2020, 39(7): 170-178.
WANG Jian-ning, FU Ji-sai, ZHUANG Hai-yang, et al. Seismic response analysis of complex subway station structure with unequal-span in liquefiable foundation[J]. Journal of Vibration and Shock, 2020, 39(7): 170-178.
[8] 王建宁, 庄海洋, 马国伟, 等. 软土层场地复杂地铁地下车站结构地震反应分析[J]. 振动与冲击, 2019, 38(19): 115-122.
WANG Jian-ning, ZHUANG Hai-yang, MA Guo-wei, et al. Seismic responses of a complicated subway underground station in soft soil layers[J]. Journal of Vibration and Shock, 2019, 38(19): 115-122.
[9] 陈国兴, 陈磊, 景立平, 等. 地铁地下结构抗震分析并行计算的显式与隐式算法比较[J]. 铁道学报, 2011, 33(11): 111-118.
CHEN Guo-xing, CHEN Lei, JING Li-ping, et al. Comparison of Implicit and Explicit Finite Element Methods with Parallel Computing for Seismic Response Analysis of Metro Underground Structures[J]. Journal of the China Railway Society, 2011, 33(11): 111-118.
[10] 龙慧, 陈国兴, 庄海洋. 可液化地基上地铁车站结构地震反应特征有效应力分析[J]. 岩土力学, 2013, 34(06): 1731-1737.
LONG Hui, CHEN Guo-xing, ZHUANG Hai-yang. Effective stress analysis of seismic response characteristics of metro station structure in liquefiable foundation[J]. Rock and Soil Mechanics, 2013, 34(06): 1731-1737.
[11] Zhuang H, Hu Z, Wang X, et al. Seismic response of a large underground structure in liquefied soils by FEM numerical modelling[J]. Bulletin of Earthquake Engineering, 2015, 13(12): 3645-3668.
[12] 赵丁凤. 可液化地基地下结构三维非线性地震反应分析的有效应力法[D]. 南京: 南京工业大学, 2018.
ZHAO Ding-feng. Simulation of a shaking table test for subway station structure in liquefiable foundation based on the effective stress method[D]. Nanjing: Nanjing Tech University 2018.
[13] Chen G X, Zhao D F, Chen W Y, et al. Investigation of Excess Pore Water Pressure Generation in Cyclic Undrained Testing[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2019, DOI: 10.1061/(ASCE)GT.1943-5606.0002057.
[14] Prevost J H. Nonlinear transient phenomena in saturated porous media[J]. Computer Methods in Applied Mechanics and Engineering, 1982, 30(1): 3-18.
[15] Popescu R, Prevost J H, Deodatis G, et al. Dynamics of nonlinear porous media with applications to soil liquefaction[J]. Soil Dyn Earthq Eng, 2006, 26(6-7): 648-655.
[16] Khoshnoudian F, Shahrour I. Numerical analysis of the seismic behavior of tunnels constructed in liquefiable soils[J]. Soils and Foundations, 2002, 42(6): 1-8.
[17] 黄雨, 八嶋厚, 张锋. 液化场地桩-土-结构动力相互作用的有限元分析[J]. 岩土工程学报, 2005, 27(6): 646-651.
HUANG Yu, YASHIMA Atsushi, ZHANG Feng. Finite element analysis of pile-soil-structure dynamic interaction in liquefiable site[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(6): 646-651.
[18] 王刚, 张建民, 魏星. 可液化土层中地下车站的地震反应分析[J]. 岩土工程学报, 2011, 33(10): 1623-1627.
WANG Gang, ZHANG Jian-min, WEI Xing. Seismic response analysis of a subway station in liquefiable soil[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(10): 1623-1627.
[19] 邹炎, 景立平, 崔杰, 等. 基于可液化场地地震反应数值模拟的影响因素分析[J]. 防灾减灾工程学报, 2015, 35(2): 242-248.
ZOU Yan, JING Li-ping, CUI Jie, et al. Factor Analysis Based on Numerical Simulation of Liquefiable Site’s Seismic Responses[J]. Journal of Disaster Prevention and Mitigation Engineering, 2015, 35(2): 242-248.
[20] Yang Z H, Elgmal A, Parra E. Computational model for cyclic mobility and associated shear deformation[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2003, 129(12): 1119-1127.
[21] Juang H C, Gong W P, Martin J R, et al. Model selection in geological and geotechnical engineering in the face of uncertainty-Does a complex model always outperform a simple model? Engineering Geology, 2018, 199: 125-139.
[22] Hashash Y M A, Phillips C, Groholski D R. Recent Advances in Non-Linear Site Response Analysis[A]. Paper presented at the fifth international conference in recent advances in geotechnical earthquake engineering and soil dynamics[C]. San Diego, California: 2010. 1-22.
[23] 张建民. 砂土动力学若干基本理论探究[J]. 岩土工程学报, 2012, 34(1): 1-50.
ZHANG Jian-min. New advances in basic theories of sand dynamics[J].Chinese Journal of Geotechnical Engineering, 2012, 34(1): 1-50.
[24] 张建民. 砂土的可逆性和不可逆性剪胀规律[J]. 岩土工程学报, 2000, 22(1): 12-17.
ZHANG Jian-min. Reversible and irreversible dilatancy of sand[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(1): 12-17.
[25] Chen G X, Wu Q, Zhou Z L, et al. Undrained anisotropy and cyclic resistance of saturated silt subjected to various patterns of principal stress rotation[J]. Géotechnique, 2019, DOI: 10.1680/jgeot.18.P.180.
[26] Huang B, Chen X Y, Zhao Y. A new index for evaluating liquefaction resistance of soil under combined cyclic shear stresses. Engineering Geology, 2015, 199: 125-139.
[27] 赵凯, 吴琪, 熊浩, 等. 双向耦合剪切条件下饱和砂土排水剪切特性试验研究[J]. 岩土工程学报, 2019, 41(7): 1260-1269.
ZHAO Kai, WU Qi, XIONG H, et al. Experimental investigations on volumetric strain behavior of saturated sands under bi-directional cyclic loadings[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(7): 1260-1269.
[28] Zienkiewicz O C, Chang C T, Bettess P. Drained, undrained, consolidating and dynamic behavior assumptions in soils[J]. Géotechnique, 1980, 30(4), 385-395.
[29] Matasovic N, Vucetic M. Cyclic Characterization of Liquefiable Sands[J]. Journal of Geotechnical Engineering, 1993, 119(11): 1085-182.
[30] 赵丁凤, 阮滨, 陈国兴, 等. 基于Davidenkov骨架曲线的修正不规则加卸载准则与等效剪应变算法及其验证[J]. 岩土工程学报, 2017, 39(05): 888-895.
ZHAO Ding-feng, RUAN Bin, CHEN Guo-xing, et al. Validation of modified irregular loading-unloading rules based on Davidenkov skeleton curve and its equivalent shear strain algorithm implemented in ABAQUS[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(5): 888-895.
[31] Byrne P M. A cyclic Shear-Volume coupling and pore pressure model for sand[C]// Second International Conference on Recent Advances in Geotechnical Earthquake Engineering and soil Dynamics. Missouri, USA, 1991: 47-55.
[32] Azadi M, Hosseini S M M. Analyses of the effect of seismic behavior of shallow tunnels in liquefiable grounds[J]. Tunneling and Underground Space Technology, 2010, 25(5): 543-552.
[33] Unutmaz B. 3D liquefaction assessment of soils surrounding circular tunnels[J]. Tunneling and Underground Space Technology, 2014, 40: 85-94.
[34] 毛昆明, 赵凯, 朱利明, 等. 地铁隧道与人防地下室相互作用的地震反应分析[J]. 振动与冲击, 2019, 38(5): 243-250.
MAO Kun-ming, ZHAO Kai, ZHU Li-ming, et al. Seismic response analysis considering interaction between subway tunnel and civil air defense basement[J]. Journal of Vibration and Shock, 2019, 38(5): 243-250.
 

PDF(2468 KB)

Accesses

Citation

Detail

段落导航
相关文章

/