新型车辆机电悬架的正实优化与性能分析

仇成群1,沈钰杰2,3,施德华3

振动与冲击 ›› 2021, Vol. 40 ›› Issue (21) : 76-81.

PDF(1268 KB)
PDF(1268 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (21) : 76-81.
论文

新型车辆机电悬架的正实优化与性能分析

  • 仇成群1,沈钰杰2,3,施德华3
作者信息 +

Positive real optimization and performance analysis of new type vehicle electromechanical suspension

  • QIU Chengqun1, SHEN Yujie2,3, SHI Dehua3
Author information +
文章历史 +

摘要

含有惯容器、弹簧和阻尼器三类机械网络元件组成车辆悬架系统由于元件众多,难以实现工程应用。针对上述问题,本文基于机电相似性理论,提出一种车辆机电悬架的参数优化设计方法,在综合考虑汽车行驶过程中垂向运动和俯仰运动的四自由度车辆机电悬架半车动力学模型基础上,探索应用机电惯容器的新型车辆机电悬架对汽车动态性能的提升效果。对于车辆悬架的多参数多约束优化问题,在考虑传递函数正实性和悬架动态性能约束的条件下,采用改进的粒子群算法对三种不同模式的车辆机电悬架的主要参数进行优化求解,并利用机电惯容器与外端电网络进行网络综合被动实现。数值仿真结果表明:在单目标优化条件下,新型车辆机电悬架的车身加速度均方根值和俯仰角加速度均方根值分别降低了26.5%和18.3%,在同时考虑双目标优化条件下可降低15.5%和11.4%,所提出的车辆机电悬架的动态隔振性能比传统被动悬架有了显著的提高,为悬架设计方法提供了新思路。

Abstract

There are many mechanical elements in the vehicle suspension system which employing the three types elements, namely, the inerter, the spring and the damper, and it cannot be easily applied to the automotive engineering. Due to this problem, a parameter optimization design method of the vehicle mechatronic suspension is proposed in this paper based on the electromechanical similarity theory. On the basis of the dynamic model of a half car model with four freedom degrees of vehicle mechatronic suspension considering the vertical motion and the pitch motion during the driving process of the vehicle, this paper explores the improvements of the new vehicle mechatronic suspension employing mechatronic inerter on the dynamic performance of the vehicle. In terms of the multi parameters and multi constraints optimization problem, the improved particle swarm optimization algorithm is used to optimize the main parameters of three different modes of vehicle mechatronic suspension by considering the positive real of transfer function and the dynamic performance constraints of the suspension, and the mechatronic inerter and the external electric network are used to realize the network passively. Numerical simulations showed that, under the single objective optimized condition, the RMS of vehicle body acceleration and pitch angular acceleration of the new vehicle mechatronic suspension are reduced by 26.5% and 18.3% respectively, and they can decrease by 15.5% and 11.4% simultaneously when taken the two objectives into consideration. The dynamic vibration isolation performance of the proposed vehicle mechatronic suspension is significantly improved compared with the traditional passive suspension, which provides a new idea for the suspension design method.

关键词

车辆 / 机电悬架 / 半车模型 / 惯容器 / 正实综合

Key words

 vehicle / mechatronic suspension / half car model / inerter / network synthesis

引用本文

导出引用
仇成群1,沈钰杰2,3,施德华3. 新型车辆机电悬架的正实优化与性能分析[J]. 振动与冲击, 2021, 40(21): 76-81
QIU Chengqun1, SHEN Yujie2,3, SHI Dehua3. Positive real optimization and performance analysis of new type vehicle electromechanical suspension[J]. Journal of Vibration and Shock, 2021, 40(21): 76-81

参考文献

[1] Huang C, Chen L, Yuan C C, et al. Non-linear modelling and control of semi-active suspensions with variable damping[J]. Vehicle System Dynamics, 2013, 51(10): 1568-1587.
[2] Chen S A, Li X, Zhao L J, et al. Development of a control method for an electromagnetic semi-active suspension reclaiming energy with varying charge voltage in steps[J]. International Journal of Automotive Technology, 2015, 16(5): 765-773.
[3] Chen S A, Cai Y M, Wang J, et al. A novel LQG controller of active suspension system for vehicle roll safety[J]. International Journal of Control, Automation and Systems,2018,16:2203-2213.
[4] Xue W P, Li K Q, Chen Q. Mixed FTS/H-infinity control of vehicle active suspensions with shock road disturbance[J]. Vehicle System Dynamics, 2019,57(6): 841-854.
[5] Smith M C. Synthesis of mechanical networks: the inerter[J]. IEEE Transactions on Automatic Control, 2002, 47(10): 1648-1662.
[6] Smith M C, Wang F C. Performance benefits in passive vehicle suspensions employing inerters[J]. Vehicle System Dynamics, 2004, 42(4): 235-257.
[7] 杨晓峰, 赵文涛, 刘雁玲, 等. 液电耦合式车辆可控ISD悬架性能分析与试验研究[J]. 中南大学学报(自然科学版), 2019, 50(9): 2327-2334.
YANG Xiao-feng, ZHAO Wen-tao, LIU Yan-ling, et al. Performance analysis and experimental study of hydro-electric coupling vehicle controllable ISD suspension[J]. Journal of Central South University(Science and Tehnology), 2019, 50(9): 2327-2334.
[8] Shen Y J, Chen L, Liu Y L, et al. Improvement of the lateral stability of vehicle suspension incorporating inerter[J]. Science China-Technological Sciences, 2018, 61(8): 1244-1252.
[9] 莊初立, 五十子幸树, 张永山. 极端地震下惯容器-弹簧-阻尼装置对隔震结构减震效果研究[J]. 振动与冲击, 2019, 38(12): 112-117.
CHONG Cholap, KOUJU Ikago, ZHANG Yong-shan. Effectiveness of an inerter-spring-damper device in the seismic response control of a isolated structure under extreme earthquakes[J]. Journal of Vibration and Shock, 2019, 38(12): 112-117.
[10] Li Y, Jiang J Z, Neild S A, et al. Optimal Inerter-Based Shock-Strut Configurations for Landing-Gear Touchdown Performance[J]. Journal of Aircraft, 2017, 54(5): 1901-1909.
[11] Papageorgiou C, Houghton N E, Smith M C. Experimental testing and analysis of inerter devices[J]. Journal of Dynamic Systems, Measurement, and Control,2009,131(1): 101-116.
[12] Swift S J, Smith M C, Glover AR. Design and modelling of a fluid inerter. International[J]. Journal of Control,2013,86(11): 2035-2051.
[13] 沈钰杰, 陈龙, 刘雁玲, 等. 基于非线性流体惯容的车辆悬架隔振性能分析[J]. 汽车工程, 2017, 39(7): 65-71.
SHEN Yu-jie, CHEN Long, LIU Yan-ling, et al. Analysis of vibration isolation performance of vehicle suspension with nonlinear fluid inerter. Automotive Engineering, 2017, 39(7): 65-71.
[14] Wang F C, Chan H. Vehicle suspension with a mechatronic network strut[J]. Vehicle System Dynamics, 2011, 49(5): 811-830.
[15] Shen Y J, Shi D H, Chen L, et al. Modeling and experimental tests of hydraulic electric inerter[J]. Science China Technological Sciences,2019,62(12): 2161-2169.
[16] 沈钰杰, 刘雁玲, 陈龙, 等. 基于高阶阻抗传递函数的车辆ISD悬架优化设计与性能分析[J]. 振动与冲击, 2019, 38(22): 95-100.
SHEN Yu-jie, LIU Yan-ling, CHEN Long, et al. Optimal design and performance analysis of a vehicle ISD suspension based on the high order impedance transfer function[J]. Journal of Vibration and Shock, 2019, 38(22): 95-100.
[17] 吴志成,陈思忠,杨林,等. 基于有理函数的路面不平度时域模型研究[J]. 北京理工大学学报,2009, 29(9): 795-798.
WU Zhi-cheng, CHEN Si-zhong, YANG Lin, et al. Model of road roughness in time domain based on rational function[J]. Transactions of Beijing institute of Technology, 2009, 29(9): 795-798.
[18] Chen M Z Q, Smith M C. A Note on Tests for Positive-Real Functions[J]. IEEE Transactions on Automatic Control, 2009, 54(2): 390-393.
[19] Shen Y J , Chen L , Liu Y L, et al. Modeling and Optimization of Vehicle Suspension Employing a Nonlinear Fluid Inerter[J]. Shock and vibration, 2016, 1-9.
[20] 梁博健, 高殿荣. 高压扇形喷嘴结构参数的优化[J]. 排灌机械工程学报, 2020, 38(1): 69-75.
LIANG Jian-bo, GAO Dian-rong. Optimization of structural parameters of fan-shaped high –pressure nozzle[J]. Journal of Drainage and Irrigation Machinery Engineering, 2020, 38(1): 69-75.
[21] 付强, 余健恩, 闫强, 等. 基于Flowmaster的不同阀门开度对供水管网优化[J]. 排灌机械工程学报, 2020, 38(3): 266-270.
FU Qiang, YU Jian-en, YAN Qiang, et al. Flowmaster-based optimization study of water supply pipe network with different valve openings[J]. Journal of Drainage and Irrigation Machinery Engineering, 2020, 38(3): 266-270.
[22] 庄星, 韩飞. 基于混合群智能算法优化BP神经网络的粮食产量预测[J]. 江苏大学学报(自然科学版), 2019, 40(2): 209-215.
ZHUANG Xing, HAN Fei. Prediction of grain yield based on BP neural network optimized by hybrid swarm intelligence algorithm[J]. Journal of Jiangsu University(Natural Science Edition), 2019, 40(2): 209-215.
[23] 孙明翰, 许哲, 郑立康,等. 基于改进型粒子群优化算法的双辊薄带振动铸轧压下控制系统优化[J]. 中国机械工程, 2020, 31(3): 360-366.
SUN Ming-han, XU Zhe, Zheng Li-kang, et al. Optimization of Twin-roll Thin Strip Vibrating Casting Screw-down Control Systems Based on Improved PSO Algorithm[J]. China Mechanical Engineering, 2020, 31(3): 360-366.

PDF(1268 KB)

27503

Accesses

0

Citation

Detail

段落导航
相关文章

/