随机车轮不圆顺及车辆参数对轨道频域振动响应影响分析

李明航1,马蒙1,谭新宇1,张厚贵2,刘卫丰1

振动与冲击 ›› 2021, Vol. 40 ›› Issue (22) : 104-111.

PDF(2348 KB)
PDF(2348 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (22) : 104-111.
论文

随机车轮不圆顺及车辆参数对轨道频域振动响应影响分析

  • 李明航1,马蒙1,谭新宇1,张厚贵2,刘卫丰1
作者信息 +

Influences of random wheel irregularity and vehicle parameters on the vibration of track in frequency domain

  • LI Minghang1,MA Meng1,TAN Xinyu1,ZHANG Hougui2,LIU Weifeng1
Author information +
文章历史 +

摘要

列车引起轨道振动响应受车辆参数及车轮养护维修状态差异等因素影响,短时间内不同地铁列车通过某一固定测试断面引起的振动响应呈现显著的不确定性,且在频域内不同频段的离散特征差异明显。为研究车轮不圆顺及车辆参数随机性对轨道振动响应的影响,以不同运营里程地铁列车车轮不圆顺实测样本为基础,构建了随机车轮不圆顺谱;测量了某地铁隧道区间轨道动态不平顺、钢轨表面粗糙度及轨道垂向振动响应;基于车-轨耦合频域解析模型,采用随机模拟法计算了随机车辆参数及随机车轮不圆顺联合作用下的轨道频域振动响应。研究发现:采用实测车轮不圆顺耦合轨道不平顺作为激励,计算获得频域轨道振动响应与测试值吻合良好,8~200 Hz的平均绝对百分比误差为2.4%;随机车辆参数、随机车轮不圆顺耦合实测轨道不平顺作用下,8 Hz以下的振动响应未出现显著的离散;16 Hz以上的振动加速度级离散明显,并均呈现正偏态分布特征;63 Hz以上频段分频振动加速度级离散超过20 dB。

Abstract

Train-induced track vibrations are affected by various factors, such as the difference of vehicle parameters and wheel maintenance status. The vibration responses induced by different metro trains passing through a fixed measurement section exhibit significant uncertainty, and the dispersion characteristics of different frequency bands differ significantly in the frequency domain. In order to analyse the influence of random wheel irregularities and random vehicle parameters on the track vibration in the frequency domain, the power spectral density model of random wheel irregularities was constructed based on the measured wheel out-of-round samples of typical metro trains with different operation mileage. The dynamic track irregularities, rail roughness and vertical vibration acceleration of track in a metro running tunnel were also tested in-situ. Based on the train-track coupled analytical model in the frequency domain, the track dynamic responses under the combination of random vehicle parameters and random wheels irregularities were calculated by the random simulation method. The research results indicate that, the frequency-domain track vibration responses are in good agreement with the measured values, and the average absolute percentage error of between 8 Hz and 200 Hz is only 2.4%. Under the influence of random vehicle parameters and random wheels irregularities power spectral density coupling measured track irregularity, there is no significant dispersion of vibration response below 8 Hz. The vibration acceleration levels above 16 Hz are obviously discrete and show normal skew distribution characteristics. The differences of frequency divided vibration levels above 63 Hz are more than 20 dB.

关键词

功率谱 / 车轮不圆顺 / 车辆参数 / 车轨耦合模型 / 轮轨耦合不平顺 / 随机模拟

Key words

power spectral density / wheel irregularity / vehicle parameters / train-track coupled model / wheel-rail coupled irregularity / stochastic simulation

引用本文

导出引用
李明航1,马蒙1,谭新宇1,张厚贵2,刘卫丰1. 随机车轮不圆顺及车辆参数对轨道频域振动响应影响分析[J]. 振动与冲击, 2021, 40(22): 104-111
LI Minghang1,MA Meng1,TAN Xinyu1,ZHANG Hougui2,LIU Weifeng1. Influences of random wheel irregularity and vehicle parameters on the vibration of track in frequency domain[J]. Journal of Vibration and Shock, 2021, 40(22): 104-111

参考文献

[1] THOMPSON D J. Railway noise and vibration: mechanisms, modelling, and means of control[M]. Oxford: Elsevier, 2009.
[2] 李宪同, 张斌, 户文成, 王小兵, 王另的, 董晖. 北京地铁环境振动预测中源强选取的研究[J]. 城市轨道交通研究, 2012, 15(8):80-83.
LI Xiantong, ZHANG Bin, HU Wencheng, et al. Selection of vibration source position in environment vibration forecast of Beijing metro[J]. Urban Mass Transit Urban Mass Trans, 2012, 15(8): 80-83. (in Chinese)
[3] 张凌, 雷晓燕, 刘全民, 冯青松. 地铁环境振动源强测试与评价标准分析[J]. 振动、测试与诊断, 2020,40(01):89-94.
ZHANG Ling, LEI Xiaoyan, LIU Quanmin, et al. Measurement and evaluation of environmental vibration source strength of the subway[J]. Journal of Vibration, Measurement and Diagnosis, 2020,40(01):89-94. (in Chinese)
[4] 马蒙, 刘维宁, 刘卫丰. 列车引起环境振动预测方法及不确定性研究进展[J]. 交通运输工程学报, 2020, 20(3):1-16.
MA Meng, LIU Weining, LIU Weifeng. Research progresses of prediction method and uncertainty of train-induced environmental vibration[J]. Journal of Traffic and Transportation Engineering, 2020, 20(3):1-16. (in Chinese)
[5] 李明航, 马蒙, 刘维宁, 吴宗臻, 张厚贵. 地铁列车振动源强离散机理测试分析[J]. 振动、测试与诊断, 2020,40(4):738-744.
LI Minghang, MA Meng, LIU Weining, et al. Analysis mechanism of vibration source dispersion induced by metro trains through in-situ test[J]. Journal of Vibration, Measurement and Diagnosis, 2020, 20(3):1-16. (in Chinese)
[6] 戴 君. 基于四分之一车辆模型的具有随机结构参数车辆的随机动力分析[J]. 振动与冲击, 2010, 29(6): 211-215.
DAI Jun. Stochastic dynamic analysis of vehicles with random parameters based on a quarter-car model[J]. Journal of Vibration and Shock, 2010, 29(6): 211-215. (in Chinese)
[7] 苏长青, 张义民, 吕春梅, 马辉. 转子系统振动的频率可靠性灵敏度分析[J]. 振动与冲击, 2009, 28(1): 56-59.
SU Changqing, ZHANG Yimin, LV Chunmei, WEN Bang-chun. Natural frequency reliability sensitivity analysis of rotor system[J]. Journal of Vibration and Shock , 2009, 28(1): 56-59. (in Chinese)
[8] 张艾萍, 李亚轩, 肖斌, 石双霞, 曹丽华, 高超, 邱瑞. 考虑参数不确定性的板结构振动响应统计分析[J]. 振动与冲击, 2018,37(09):52-57.
ZHANG Aiping, LI Yaxuan1, XIAO Bin, et al. Statistical analysis for vibration responses of plate structures considering parametric uncertainty[J]. Journal of Vibration and Shock, 2018,37(9): 44-49. (in Chinese)
[9] 李杰 陈建兵. 随机动力系统中的概率密度演化方程及其研究进展[J]. 力学进展, 2010,40(2): 170-188.
Jie Li CHEN Jianbing. Advances in the research on probability density evolution equations of stochastic dynamical systems[J]. Advances in Mechanics, 2010,40(2): 170-188. (in Chinese)
[10] 余志武, 毛建锋, 谈遂, 曾志平.车辆参数随机的车桥竖向随机振动分析[J].铁道学报,2015,37(01):97-104.
YU Zhiwu, MAO Jianfeng, TAN Sui, et al. The stochastic analysis of track-bridge vertical coupled vibration with random train parameters[J]. Journal of the China Railway Society, 2015,37(01):97-104. (in Chinese)
[11] 徐磊, 翟婉明.车轮踏面磨耗及轨道不平顺联合作用下的车辆-轨道系统随机分析模型[J].铁道学报,2020,42(02):79-85.
XU Lei, ZHAI Wanming. Stochastic analysis model for vehicle-track coupled systems under joint random irregularities of wheel treads and track irregularities[J], Journal of the China Railway Society, 2020,42(02):79-85. (in Chinese)
[12] 项盼. 具有不确定参数车轨耦合系统随机振动问题研究[D]. 大连:大连理工大学, 2016.
GU Pan. Study on random vibration analysis for coupled vehicle-track systems with uncertain parameters[D]. Dalian: Dalian University of Technology, 2016. (in Chinese)
[13] 焦新涛, 丁康. 加窗频谱分析的恢复系数及其求法[J]. 汕头大学学报(自然科学版), 2003, 18(003):26-30.
JIAO Xintao, DING Kang. Resetting moduli and solutions in windowing spectrum analysis[J]. Journal of Shantou University (Natural Science), 2003, 18(003):26-30. (in Chinese)
[14] 康熊, 刘秀波, 李红艳, 杨飞, 高建敏, 翟婉明. 高速铁路无砟轨道不平顺谱[J]. 中国科学:技术科学, 2014, 44(7):687-696.
KANG Xiong, LIU Xiubo, LI Hongyan, et al. PSD of ballastless track irregularities of high-speed railway[J]. Scientia Sinica (Technologica), 2014,44: 687–696. (in Chinese)
[15] 马蒙, 李明航, 谭新宇, 曲翔宇, 张厚贵. 地铁轮轨耦合不平顺激励对轨道振动影响分析[J]. 工程力学. doi: 10.6052/j.issn.1000-4750.2020.06.0421
MA Meng, LI Minghang, TAN Xinyu, et al. Influence analysis on track vibration due to coupled irregularity excitation of metro wheel-track[J]. Engineering Mechanics. doi: 10.6052/j.issn.1000-4750.2020.06.0421 (in Chinese)
[16] 韩鹏, 张卫华. 高速列车轮对磨耗统计规律及预测模型[J]. 机械工程学报, 2016,52(02):144-149.
HAN Peng, ZHANG Weihua. Prediction model and verification of wheel wear in high-speed trains[J]. Journal of Mechanical Engineering, 2016,52(02):144-149. (in Chinese)
[17] 马龙祥. 基于无限-周期结构理论的车轨耦合及隧道-地层振动响应分析模型研究[D]. 北京:北京交通大学, 2015.
MA Longxiang. Study on the Model of Coupled Vehicle & Track and the Analysis Model for Tunnel-ground Vibration Response based on the Periodic-infinite Structure Theory[D]. Beijing: Beijing Jiaotong University,2014. (in Chinese)
[18] 翟婉明.车辆-轨道耦合动力学(第二版)[M].北京:中国铁道出版社,2002.
[19] BELOTSERKOVSKIY P M. On the oscillations of infinite periodic beams subject to a moving concentrated force[J]. Journal of Sound and Vibration, 1996,193(3): 705–712.
[20] BELOTSERKOVSKIY P M. Forced oscillations of infinite periodic structures. Applications to railway track dynamics[J]. Vehicle System Dynamics, 1998, 29(sup1):85-103.
[21] SHENG X Z, JONES C, THOMPSON D J. Responses of infinite periodic structures to moving or stationary harmonic loads[J]. Journal of Sound and Vibration, 2005, 282(1-2):125-149.
[22] HUSSEIN M F M and HUNT H E M. A numerical model for calculating vibration due to a harmonic moving load on a floating-slab track with discontinuous slabs in an underground railway tunnel[J]. Journal of Sound and Vibration, 2009, 321(1-2):363-374.
[23] REMINGTON P J. Wheel/rail noise—Part IV: Rolling noise[J]. Journal of Sound and Vibration, 1976, 46(3):419-436.
[24] JANSSENS M H A, DITTRICH M G, BEER F G D, et al. Railway noise measurement method for pass-by noise, total effective roughness, transfer functions and track spatial decay[J]. Journal of Sound & Vibration, 2006,293(3-5):1007-1028.
[25] LI Q, THOMPSON D J, TOWARD M G. Estimation of track parameters and wheel–rail combined roughness from rail vibration[J]. Proceedings of the Institution of Mechanical Engineers Part F Journal of Rail & Rapid Transit, 2018,232(4) 1149–1167.
[26] 文德智, 卓仁鸿, 丁大杰, 郑慧, 成晶, 李正宏. 蒙特卡罗模拟中相关变量随机数序列的产生方法[J].物理学报, 2012,61(22):26-33.
WEN Dezhi, ZHUO Renhong, DING Dajie, et al. Generation of correlated pseudorandom variables in Monte Carlo simulation[J]. Acta Physica Sinica, 2012,61(22):26-33. (in Chinese)

PDF(2348 KB)

443

Accesses

0

Citation

Detail

段落导航
相关文章

/