基于PZT扭振模式的纵-弯耦合模态驻波型直线超声波电机

陆旦宏,林秋香,徐健乔,蒋春容,孙芮

振动与冲击 ›› 2021, Vol. 40 ›› Issue (22) : 121-127.

PDF(1766 KB)
PDF(1766 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (22) : 121-127.
论文

基于PZT扭振模式的纵-弯耦合模态驻波型直线超声波电机

  • 陆旦宏,林秋香,徐健乔,蒋春容,孙芮
作者信息 +

Linear ultrasonic motor based on longitudinal-bending coupled modal standing wave excited by the shear vibration mode of PZT ceramics

  • LU Danhong,LIN Qiuxiang,XU Jianqiao,JIANG Chunrong,SUN Rui
Author information +
文章历史 +

摘要

基于耦合振动理论设计出一种新型偏心式结构的驻波型直线超声波电机,其工作模态为包含一阶纵振成分与二阶弯振成分的耦合振动模态。与纵振和弯振的复合振动模态不同的是,本文所设计超声波电机的工作模态通过构造定子的质心偏移条件,将这两种振型成分耦合,形成定子的耦合模态。其中,二阶弯振成分由金属弹性体两端压电陶瓷的扭振模式(d15模式)激励产生,一阶纵振成分通过耦合同时产生。设计了工作于d15模式的压电陶瓷的极化以及电源激励方案,详细阐述了电机的工作原理。利用有限元分析软件对定子的结构尺寸进行了设计,并对定子进行瞬态分析以得到各驱动足的运动轨迹。制作电机的实验样机并搭建实验平台,测试了样机的频率特性、电压特性以及机械特性。

Abstract

Based on the coupled vibration theory, a novel standing wave linear ultrasonic motor with eccentric structure is designed. Its working mode is a coupled vibration mode including the first longitudinal vibration component and the second bending vibration component. Different from the composite mode of longitudinal vibration mode and bending vibration mode, the working mode of the linear ultrasonic motor designed in this paper couples the two vibration components into the coupled mode of the stator by constructing the condition of the centroid deviation of the stator. The second bending vibration component of the stator is excited by the d15 mode of PZT ceramics at two ends of the elastomer, and the first longitudinal vibration component is simultaneously generated by coupling. The polarization of PZT ceramics working in d15 mode and power supply excitation scheme are designed. The working principle of the motor is described in detail. The structural parameters of the stator are designed by ANSYS, and the transient analysis of the stator is carried out to obtain the trajectories of driving feet. A prototype is made, and the experimental system has been established to test the frequency characteristics, voltage characteristics and mechanical characteristics.

关键词

直线型超声波电机 / 耦合模态 / d15模式

Key words

 Linear ultrasonic motor / Coupled mode / d15 mode

引用本文

导出引用
陆旦宏,林秋香,徐健乔,蒋春容,孙芮. 基于PZT扭振模式的纵-弯耦合模态驻波型直线超声波电机[J]. 振动与冲击, 2021, 40(22): 121-127
LU Danhong,LIN Qiuxiang,XU Jianqiao,JIANG Chunrong,SUN Rui. Linear ultrasonic motor based on longitudinal-bending coupled modal standing wave excited by the shear vibration mode of PZT ceramics[J]. Journal of Vibration and Shock, 2021, 40(22): 121-127

参考文献

[1] 许海,赵淳生. 直线型超声电机的发展及应用[J]. 中国机械工程,2003,(08):91-93+6.
XU Hai,ZHAO Chunsheng. Development and application of linear ultrasonic motor[J]. China Mechanical Engineering, 2003, (08): :91-93+6.
[2] 孙旭东, 王善铭. 电机学学习指导[M]. 北京:清华大学出版社, 2007.
SUN Xudong, WANG Shanming. Learning guidance of electrical machinery[M]. Beijing: Tsinghua University Press, 2007.
[3] 陈维山, 赵学涛, 刘军考, 等. 压电超声波马达发展现状及研究方向[J]. 电机与控制学报, 2006, 10(5) : 498-502.
CHEN Weishan, ZHAO Xuetao, LIU Junkao, et al. A survey and current research of ultrasonic motor [J]. Electric Machines and Control, 2006, 10(5): 498-502.
[4] 胡敏强. 超声电动机的研究及其应用[J]. 微特电机, 2000, 28(5):8-11,24.
HU Minqiang. Research and Application of Ultrasonic Motor [J]. Small & Special Electrical Machines, 2000, 28(5):8-11,24.
[5] 林书玉. 压电陶瓷矩形振子的三维等效电路及其在振子频率特性分析中的应用[J]. 声学与电子工程, 1994, 000(002):17-28,37.
LIN Shuyu. Three dimensional equivalent circuit of piezoelectric ceramic rectangular vibrator and its application in frequency characteristic analysis [J]. Acoustics and Electronics Engineering, 1994, 000(002):17-28,37.
[6] 赵淳生. 超声电机技术与应用[M].北京:科学出版社. 2007.
ZHAO Chunsheng. Ultrasonic Motors: Technologies and Applications [M]. Beijing: Science press. 2007.
[7] 鹿存跃, 周铁英, 陈宇,等.压电陶瓷剪切模式用于超声波电动机的研究[J]. 微特电机, 2007, 35(010):14-17.
LU Cunyue, ZHOU Tieying, CHEN Yu. Application Research of Piezoelectric Ceramic Components with Shear Modes in Ultrasonic Motors [J]. Small & Special Electrical Machines, 2007, 35(010):14-17.
[8] 曾劲松, 郭长亮. 四足直线超声电机的研究[J]. 微电机, 2012, 45(09): 39-42.
ZENG Jinsong, GUO Changliang. Study on a Bionic Four-legged Linear Ultrasonic Motor [J]. Micromotors, 2012, 45(09): 39-42.
[9] Yan J, Liu Y, Liu J, et al. The design and experiment of a novel ultrasonic motor based on the combination of bending modes[J]. Ultrasonics, 2016, 71:205-210.
[10] ROH, Yongrae, and KWON “Development of a new standing wave type ultrasonic linear motor,” Sensors & Actuators A Physical, vol. 112, no. 2, pp. 196-202, Jan. 2004.
[11] Vyshnevsky O, Kovalev S, Wischnewskiy W. A novel, single-mode piezoceramic plate actuator for ultrasonic linear motors[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2005, 52(11):2047-2053.
[12] 郝铭. 纵弯复合平面超声电机及驱动系统的研究[D].哈尔滨工业大学,2009.
Hao Ming. Research on longitudinal bending composite plane ultrasonic motor and its driving system [D]. Harbin Institute of technology, 2009
[13] LIU Y X, LI C H, CHEN W S, et al. Analysis of a novel longitudinal-bending hybrid ultrasonic motor using vibration coupling [C]//2015 Symposiumon Piezoelectricity, Acoustic Waves, and Device Applications. 2015.
[14] Liu Y, Shi S, Li C, et al. Development of a bi-directional standing wave linear piezoelectric actuator with four driving feet[J]. Ultrasonics ,2017, 84:81.
[15] WANG L, LIU J K, LIU Y X, et al. A novel single-mode linear piezoelectric ultrasonic motor based on asymmetric structure[J]. Ultrasonics, 2018, 89:137-142.
[16] 丁桂军. 机械波在界面的反射、透射和半波损失[J]. 大学物理, 2018, 37(4):8-10.
DING Guijun. Reflection, transmission and half wave loss of mechanical wave at interface [J]. College physics, 2018, 37(4): 8-10.
[17] 王剑, 张振果, 任龙龙, 等. 考虑质量偏心的阶梯梁-基础的强迫振动计算[J]. 振动与冲击, 2017, 36(22):118-124.
WANG Jian, ZHANG Zhenguo, REN Longlong, et al. Forced vibration calculation of an eccentric stepped beam-foundation system [J]. Journal of vibration and shock, 2017, 36(22):118-124.
[18] Hajhosseini M, Rafeeyan M. Modeling and analysis of piezoelectric beam with periodically variable cross-sections for vibration energy harvesting [J]. Applied Mathematics & Mechanics, 2016, 37(8):1053-1066.
[19] 崔灿, 蒋晗, 李映辉. 变截面梁横向振动特性半解析法[J]. 振动与冲击, 2012, 31(14):85-88.
CUI Can, JIANG Han, LI Yinhui. Semi-analytical method for calculating vibration characteristics of variable cross-section beam [J]. Journal of vibration and shock, 2012, 31(14):85-88.
[20] 王剑, 张振果, 华宏星. 考虑质量偏心Timoshenko梁的弯-纵耦合固有振动特性研究[J]. 振动与冲击, 2015(19):16-20+44.
WANG Jian, ZHANG Zhenguo, HUA Hongxing. Flexural-longitudinal coupled natural vibration characteristics of a Timoshenko beam considering mass eccentricity [J]. Journal of vibration and shock, 2015(19):16-20+44.
[21] 李黎明. ANSYS 有限元分析实用教程[M].北京:清华大学出版社, 2005.
LI Liming. Practical course of ANSYS finite element analysis [M]. Beijing: Tsinghua University Press, 2005.
[22] 邵蕴秋. ANSYS 8.0有限元分析实例导航[M]. 北京:中国铁道出版社,2004.
SHAO Yunqiu. Example navigation of ANSYS 8.0 finite element analysis [M]. Beijing: China Railway Publishing House, 2004.
[23] He S Y, Chen W S, Tao X, et al. Standing wave bi-directional linearly moving ultrasonic motor[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2002, 45(5):1133-1139.
[24] Tomoya Kazumi, Yuta Kurashina, Kenjiro Takemura. “Ultrasonic motor with embedded preload mechanism,” Sensors & Actuators A Physical, vol. 289, pp. 44-49, Feb. 2019.
[25] Shi Y L, Zhao C S. A new standing-wave-type linear ultrasonic motor based on in-plane modes[J]. Ultrasonics, 2011, 51(4):397-404.

PDF(1766 KB)

Accesses

Citation

Detail

段落导航
相关文章

/