本文针对电磁直线式主动悬架作动器电磁波动力大、有效输出力低的问题,设计了一种多目标粒子群参数优化算法。建立了作动器有限元模型,通过径向磁通密度的理论计算和有限元仿真值作对比,验证了有限元模型的正确性。对作动器的槽口宽度、初级边端长度和极距长度进行参数敏感度分析和多目标粒子群优化,并对比分析了优化前后作动器的输出力、反电动势和波动力。最后试制了物理样机并开展了阻尼力特性试验和电磁力特性试验。仿真结果表明:当电磁作动器的结构参数通过优化后,有效电磁力、总谐波畸变量和电磁波动力均得到了改善。试验结果表明:阻尼力波动试验值与仿真值基本一致,平均电磁力试验值和仿真值随电压变化呈线性分布且误差较小。
Abstract
In this paper, a multi-objective particle swarm optimization algorithm is designed to solve the problem of large electromagnetic wave force and low effective output force of linear active suspension actuator. The finite element model of the actuator is established, and the correctness of the finite element model is verified by comparing the theoretical calculation of the radial magnetic flux density with the simulation results. The notch width, the edge length and the pole distance of the actuator are Sensitivity analysis and multi-objective Particle swarm optimization, and the output force, back electromotive force and wave force of the actuator before and after optimization are compared. At last, the physical prototype is manufactured and the damping force and electromagnetic force characteristics are tested. The simulation results show that when the structure parameters of the electromagnetic actuator are optimized, the effective electromagnetic force, total harmonic distortion and electromagnetic wave force are improved. The test results show that the test value of damping force fluctuation is basically consistent with the simulation value, and the average electromagnetic force test value and the simulation value vary linearly with the voltage and the error is small.
关键词
主动悬架 /
电磁直线作动器 /
多目标粒子群优化 /
台架试验
{{custom_keyword}} /
Key words
Active suspension /
electromagnetic linear actuator /
multi-objective particle swarm optimization /
bench test
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 曹 民,刘 为,喻 凡. 车辆主动悬架用电机作动器的研制[J].机械工程学报,2008, 44(11): 224-228.
CAO Min, LIU Wei, YU Fan. Development of motor actuator for vehicle active suspension [J]. Journal of Mechanical Engineering, 2008, 44(11): 224-228.
[2] 喻 凡,张勇超,张国光. 车辆电磁悬架技术综述[J]. 汽车工程,2012, 34(07): 569-574.
YU Fan, ZHANG Yong-chao, ZHANG Guo-guang. Overview of vehicle electromagnetic suspension technology [J]. Automotive Engineering, 2012, 34(07): 569-574.
[3] 钟银辉,李以农,杨 超,徐广徽,孟凡明. 基于主动悬架控制轮边驱动电动车垂向振动研究[J]. 振动与冲击,2017,36(11): 242-247.
ZHONG Yin-hui, LI Yi-nong, YANG Chao, XU Guang-hui, MENG fan-ming. Research on vertical vibration of wheel-side drive electric vehicle based on active suspension control [J]. Vibration and shock, 2017, 36(11): 242-247.
[4] 张利鹏,任晨辉,李韶华. 轮毂电机驱动汽车侧向稳定性底盘协同控制[J]. 机械工程学报,2019, 55(22): 153-164.
ZHANG Li-peng, REN Chen-hui, LI Shao-hua. Collaborative control of lateral stability chassis of automobile driven by hub motor [J]. Journal of Mechanical Engineering,2019,55(22): 153-164.
[5] 邓兆祥,来 飞. 车辆主动悬架用电磁直线作动器的研究[J]. 机械工程学报,2011, 47(14): 121-128.
DENG Zhao-xiang, LAI Fei. Research on electromagnetic linear actuator for vehicle active suspension [J]. Journal of Mechanical Engineering, 2011, 47(14): 121-128.
[6] 杨 超,李以农,钟银辉,等. 分数槽结构悬架直线作动器的性能及其应用[J]. 上海交通大学学报,2016, 50(06): 837-843.
YANG Chao, LI Yi-nong, ZHONG Yin-hui, et al. Performance and application of linear actuator for fractional slot suspension [J]. Journal of Shanghai Jiaotong University, 2016, 50(06): 837-843.
[7] 王明杰,徐 伟,杨存祥,等. 基于精确子域模型的永磁直线同步电机空载磁场解析计算[J]. 电工技术学报,2020, 35(05): 942-953.
WANG Ming-jie, WEI Xu, YANG Cun-xiang, et al. Analytical calculation of no-load magnetic field of permanent magnet linear synchronous motor based on accurate subdomain model [J]. Acta Electrotechnical Sinica, 2020, 35(05): 942-953.
[8] HAN Ying-Jiang,KUN Liang,ZHAO hua-Li. Characteristics of a novel moving magnet linear motor for linear compressor[J]. Mechanical Systems and Signal Processing, 2019, 141: 828-840.
[9] 陆 震. 电磁悬架用五相容错永磁圆筒直线电机的设计与分析[D]. 江苏:江苏大学,2017.
LU Zhen. Design and analysis of five-phase fault-tolerant permanent magnet cylindrical linear motor for electromagnetic suspension [D]. Jiangsu: Jiangsu University, 2017.
[10] Krishnan R. 永磁无刷直流电机及其驱动技术[M]. 机械工业出版社,2012.
Krishnan R. Permanent Magnet Brushless DC Motor and Its Driving Technology [M]. Mechanical Industry Press, 2012.
[11] 赵镜红,张俊洪,方 芳,等. 径向充磁圆筒永磁直线同步电机磁场和推力解析计算[J]. 电工技术学报,2011, 26(07):154-160.
ZHAO Jing-hong,ZHANG Jun-hong,FANG Fang,et al. Analytical calculation of magnetic field and thrust of radially magnetized cylindrical permanent magnet linear synchronous motor [J]. Acta Electrotechnical Sinica, 2011,26(07): 154-160.
[12] 张 琪,梁冰洁,黄苏融,周 翔. 槽口宽度对分数槽集中绕组永磁电机齿槽转矩的影响[J]. 电机与控制应用,2015, 42(07): 1-5.
ZHANG Qi,LIANG Bing-jie,HUANG Su-rong,ZHOU Xiang. Effect of Slot width on cogging Torque of fractional-slot concentrated winding permanent magnet motor J. Motor and control applications, 2015, 42(07): 1-5.
[13] Kai Zhang,Guo rong,Zhao Jing Jiang. Particle Swarm Optimization Method for Resource-Constrained Project Scheduling Problem [C]. Proceedings of 2009 9th International Conference on Electronic Measurement & Instruments,2009: 805-809.
[14] L.P.Zhang,H.J.Yu,S.X.Hu. Optimal choice of parameters for particle swarm optimization [J]. Journal of Zhejiang University SCIENCE, 2005, 6(06): 528-534.
[15] ABIDO M.A. Multiobjective evolutionary algorithms for electric power dispatch problem [J]. IEEE Transactions on Evolutionary Computation, 2006, 10(03): 315-329.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}