机车再生制动力分布对重载组合列车纵向冲动影响研究

晏新凯,魏伟

振动与冲击 ›› 2021, Vol. 40 ›› Issue (22) : 161-166.

PDF(1477 KB)
PDF(1477 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (22) : 161-166.
论文

机车再生制动力分布对重载组合列车纵向冲动影响研究

  • 晏新凯,魏伟
作者信息 +

Influences of locomotive regenerative braking force distribution on the longitudinal impulse of heavy haul combined trains

  • YAN Xinkai,WEI Wei
Author information +
文章历史 +

摘要

重载组合列车在长大下坡路段制动缓解时常常出现较大的车钩力,严重时会导致脱轨、断钩事故,威胁到行车安全。使用空气制动与纵向动力学联合仿真系统,计算了“神8+神8”,“神8+神12”与“神12+神8”三种列车编组在长大坡道制动缓解工况中不同的再生制动力分布对列车纵向冲动的影响。计算结果表明,在总再生制动力相同情况下,神12作为主控机车时缓解后最大拉钩力比神8+神8编组平均减小了12.6%,提出了车钩力降低的发生机理,长大坡道缓解时大再生制动力机车作为主控机车较为合理,为重载组合列车差异化控制提供了基础。

Abstract

The excessive coupler force often occurs when a heavy haul combined train is releasing on a long steep ramp, and the overlarge coupler force may cause derailment and coupler fracture, threatening the security of train operation. Using the Train Air Brake and Longitudinal Dynamics Simulation System (TABLDSS), Influences of different locomotive regenerative braking force distribution of “S8+S8”, “S8+S12”and “S12+S8” train marshalling on longitudinal impulse during braking and releasing process was simulated. The results showed that, under the same total regenerative braking force, the maximum tensile coupler force of “S12+S8” marshalling could be reduced by 12.6% than “S8+S8” marshalling; a mechanism of reducing coupler force was proposed; it’s reasonable for reducing the tensile coupler force that a high-powered locomotive acts as main control locomotive during a train is releasing on a long steep ramp, providing the foundation for heavy haul combined trains’ differentiated control.

关键词

纵向动力学 / 重载列车 / 再生制动力 / 车钩力

Key words

 longitudinal dynamics / heavy haul train / regenerative braking force / coupler force

引用本文

导出引用
晏新凯,魏伟. 机车再生制动力分布对重载组合列车纵向冲动影响研究[J]. 振动与冲击, 2021, 40(22): 161-166
YAN Xinkai,WEI Wei. Influences of locomotive regenerative braking force distribution on the longitudinal impulse of heavy haul combined trains[J]. Journal of Vibration and Shock, 2021, 40(22): 161-166

参考文献

[1] Belforte P, Cheli F, Diana G, et al. Numerical and experimental approach for the evaluation of severe longitudinal dynamics of heavy freight trains[J]. Vehicle System Dynamics, 2008, 46(sup1): 937-955.
[2] Dmitry P, Vladislav Y, Nikolay L et al. Train 3D: the technique for inclusion of three-dimensional models in longitudinal train dynamics and its application in derailment studies and train simulators[J]. Vehicle System Dynamics, 2017, 55(4):583-600.
[3] N Bosso, N Zampieri. Long train simulation using a multibody code[J]. Vehicle System Dynamics, 2017, 55(4): 552-570.
[4] Reza S, Saeed M, Asghar N. Influence of train length on in-train longitudinal forces during brake application[J]. Vehicle System Dynamics, 2019, 57(2):192-206.
[5] 魏 伟,张东芹,张 军. 重载列车纵向冲动机理及参数影响[J].大连交通大学学报, 2011, 32(01): 1-6.
WEI Wei, ZHANG Dong-qin, ZHANG Jun. Study of longitudinal impulse mechanism and parameters’ impact of heavy haul train[J]. Journal of dalian jiaotong university, 2011,32(01):1-6.
[6] 张 帅. 重载列车牵引与电制动模型分析验证[D].大连交通大学, 2018.
[7] 蒋立干,时 瑾,龙许友.大轴重重载列车长大下坡道曲线地段行车性能分析[J].振动与冲击,2017,36(15):77-83.
JIANG Li-Gan, SHI Jin, LONG Xu-you. Operational performance analysis for a heavy haul train passing through curve section of a long steep ramp[J]. Journal of Vibration and Shock , 2017,36(15):77-83.
[8] 赵文涛,魏 伟. 基于主、从控机车异步控制的重载列车操纵优化[J].交通术,2020,9(02):50-58.
ZHAO Wen-tao, WEI Wei. Based on the asynchronous slave control of main and slave locomotive to the operating optimization of heavy haul train[J]. Open journal of transportation technologies, 2020, 9(02):50-58.
[9] 赵洪涛.适应于神华铁路运用的大功率交流传动电力机车研究[J].电力机车与城轨车辆. 2011,34(06):25-28.
ZHAO Hong-tao. Research of high-power AC drive electric locomotive suitable for Shenhua railway[J]. Electric locomotives & mass transit vehicles, 2011, 34(06): 25-28.
[10] 魏 伟,王 强.坡道上重载列车纵向冲动研究[J].振动与冲击, 2014,33(05):143-148.
WEI Wei, WANG Qiang. Influence of train brake on longitudinal impluse of a heavy haul train passing through a ramp[J]. Journal of Vibration and Shock , 2014,33(05):143-148.
[11] 姚小沛,王 磊,邵 军,等.重载组合列车纵向性能的影响因素分析[J].铁道机车车辆,2014, 34(06):8-12+35.
YAO Xiao-pei, WANG Lei, SHAO Jun, et al. Analysis of factors affecting longitudinal performance of heavy haul combined train[J]. Railway locomotive & car, 2014, 34(06): 8-12+35.
[12] 赵连刚. 基于制动系统仿真的两万吨列车纵向动力学分析[D].大连交通大学,2008.
[13] 孙树磊,李 芾,丁军君,等.重载列车空气制动特性多参数数学简化方法[J].铁道车辆, 2017, 55(09):6-9+4.
SUN Shu-lei, LI Fu, DING Jun-jun, et al. The multi-parameter mathematic simplification method for air braking features of heavy haul trains[J]. Rolling Stock, 2017, 55(09):6-9+4. 
[14] 曹记胜,王奇钟,李海龙.2万t重载组合列车联合制动时缓解后前涌的原因及对策[J].铁道机车车辆,2014,34(03):97-98+125.
CAO Ji-sheng, WANG Qi-zhong, LI Hai-long. The causes and solutions for the surge of 20000t overloaded unit train during braking time[J].  Railway locomotive & car, 2014, 34(03): 97-98+125.
[15] 高胜利.浅析2万吨重载列车循环制动工况下的同步操纵、再生力差异化控制方案的可行性研究[C]. 2019年纵向动力学发展技术交流会论文集. 肃宁:中国铁道学会第四届重载委员会, 2019.56-61.
[16] 魏 伟,李文辉.列车空气制动系统数值仿真[J].铁道学报,2003(01):38-42.
WEI Wei, LI Wen-hui. Simulation model of train brake system[J]. Journal of the China railway society, 2003(01):38-42.
[17] 宋 健. 重载列车纵向动力学试验与仿真的比较研究[D].大连交通大学,2018.
[18] 魏 伟,赵旭宝,姜 岩,等.列车空气制动与纵向动力学集成仿真[J].铁道学报,2012,34(04): 39-46.
WEI Wei, ZHAO Xu-bao, JIANG Yan, et al. The integrated model of train air brake and longitudinal dynamics[J]. Journal of the China railway society,2012,34(04):39-46.
[19] Wu Q, Spiryagin M, Cole C, et al. International benchmarking of longitudinal train dynamics simulators: results[J]. Vehicle System Dynamics, 2018,56(3):343-365.

PDF(1477 KB)

411

Accesses

0

Citation

Detail

段落导航
相关文章

/