改进多元层次波动色散熵及其在滚动轴承故障诊断中的应用

周付明,杨小强,申金星,刘武强,刘小林

振动与冲击 ›› 2021, Vol. 40 ›› Issue (22) : 167-174.

PDF(1829 KB)
PDF(1829 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (22) : 167-174.
论文

改进多元层次波动色散熵及其在滚动轴承故障诊断中的应用

  • 周付明,杨小强,申金星,刘武强,刘小林
作者信息 +

Modified multivariate hierarchical fluctuation dispersion entropy and its application to  the fault diagnosis of rolling bearings

  • ZHOU Fuming,YANG Xiaoqiang,SHEN Jinxing,LIU Wuqiang,LIU Xiaolin
Author information +
文章历史 +

摘要

针对滚动轴承振动信号故障特征难以提取以及单通道振动信号分析易存在故障信息缺漏的问题,提出一种新的衡量多通道时间序列动态特征的方法——改进多元层次波动色散熵(MMHFDE),将其用于提取滚动轴承多通道振动信号中的故障特征,在此基础上提出一种基于MMHFDE,最大相关最小冗余(mRMR)和粒子群优化核极限学习机(PSO-KELM)的滚动轴承故障诊断新方法。首先使用MMHFDE提取滚动轴承不同状态的故障特征,而后采用mRMR从得到的故障特征中筛选敏感特征构成敏感特征向量,最后将敏感特征向量输入到基于PSO-KELM构建的故障分类器中进行故障识别。由实验结果可知,提出的方法可以有效识别滚动轴承不同故障状态。

Abstract

Aiming at the problems that the fault features of rolling bearings vibration signals are difficult to extract and the single-channel vibration signals analysis is prone to fault information missing, a new method for measuring the dynamic features of multi-channel time series, which is called MMHFDE is proposed to extract the fault features of the multi-channel vibration signals of rolling bearings. On this basis, a new method for rolling bearings fault diagnosis based on MMHFDE, mRMR and PSO-KELM is proposed. Firstly, MMHFDE is applied to extract the fault features of rolling bearings under different states, and then mRMR is applied to screen the sensitive features from the obtained fault features to form sensitive feature vectors. Finally,the sensitive feature vectors are input into fault classifier based on PSO-KELM for fault identification. Experimental results show that the proposed method can effectively identify different fault states of rolling bearings.

关键词

改进多元层次波动色散熵 (MMHFDE) / 最大相关最小冗余 (mRMR) / 粒子群优化核极限学习机(PSO-KELM) / 滚动轴承 / 故障诊断

Key words

 modified multivariate hierarchical fluctuation dispersion entropy (MMHFDE) / max-relevance and min-redundancy(mRMR) / particle swarm optimization kernel extreme learning machine (PSO-KELM) / rolling bearings / fault diagnosis

引用本文

导出引用
周付明,杨小强,申金星,刘武强,刘小林. 改进多元层次波动色散熵及其在滚动轴承故障诊断中的应用[J]. 振动与冲击, 2021, 40(22): 167-174
ZHOU Fuming,YANG Xiaoqiang,SHEN Jinxing,LIU Wuqiang,LIU Xiaolin. Modified multivariate hierarchical fluctuation dispersion entropy and its application to  the fault diagnosis of rolling bearings[J]. Journal of Vibration and Shock, 2021, 40(22): 167-174

参考文献

[1]  唐贵基,田甜,庞彬.基于总变差去噪和快速谱相关的滚动轴承故障诊断[J].振动与冲击,2019,38(11):187-193+227.
TANG Guiji, TIAN Tian, PANG Bin. Rolling bearing fault diagnosis method based on total variation de-noising and fast spectral correlation [J]. Journal of Vibration and Shock, 2019,38(11):187-193+227.
[2]  DUAN Z, WU T, GUO S, et al. Development and trend of condition monitoring and fault diagnosis of multi-sensors information fusion for rolling bearings: a review[J]. The International Journal of Advanced Manufacturing Technology, 2018, 96(1-4): 803-819.
[3] 马增强,李亚超,刘政,等.基于变分模态分解和Teager能量算子的滚动轴承故障特征提取[J].振动与冲击,2016,35(13):134-139.
 MA Zengqiang, LI Yachao, LIU Zheng, et al. Rolling bearings' fault feature extraction based on variational mode decomposition and Teager energy operator[J]. Journal of Vibration and Shock, 2016,35(13):134-139.
[4]  汪朝海,蔡晋辉,曾九孙.基于经验模态分解和主成分分析的滚动轴承故障诊断研究[J].计量学报,2019,40(06):1077-1082.
 WANG Chaohai, CAI Jinhui, ZENG Jiusun. Research on Fault Diagnosis of Rolling Bearing Based on Empirical Mode Decomposition and Principal Component Analysis[J]. Acta Metrologica Sinica, 2019,40(06):1077-1082.
[5]   杨艳君,魏永合,王晶晶,等.基于LMD和SVDD的滚动轴承健康状态评估[J].机械设计与制造,2019(05):163-166+170.
YANG Yanjun, WEI Yonghe, WANG Jingjing, et al. Roller Bearing Health Condition Assessment Based on LMD and SVDD[J]. Machinery Design & Manufacture, 2019(05):163-166+170.
[6]   陈鹏,赵小强,朱奇先.基于多尺度排列熵和改进多分类相关向量机的滚动轴承故障诊断方法[J].电子测量与仪器学报,2020,34(02):20-28.
CHEN Peng, ZHAO Xiaoqiang, ZHU Qixian. Rolling bearing fault diagnosis method based on multi-scale permutation entropy and improved multi-class relevance vector machine[J]. Journal of Electronic Measurement and Instrumentation, 2020,34(02):20-28.
[7] 许凡,方彦军,张荣.基于多尺度样本熵与PCA-FCM的滚动轴承故障诊断[J].青岛科技大学学报(自然科学版),2017,38(02):100-106+111.
 XU Fan, FANG Yanjun, ZHANG Rong. Rolling Bearing Fault Diagnosis Method Based on Multiscale Sample Entropy and PCA-FCM[J]. Journal of Qingdao University of Science and Technology (Natural Science Edition), 2017,38(02):100-106+111.
[8]  李生鹏,韦朋余,丁峰,等.基于多尺度模糊熵和主成分分析的轴承故障特征提取[J].船舶力学,2018,22(10):1277-1285.
LI Shengpeng, WEI Pengyu, DING Feng, et al. Fault features extract of rolling bearing based on multiscale  fuzzy entropy and principal component analysis [J]. Journal of Ship Mechanics, 2018,22(10):1277-1285.
[9]  JIANG Y, PENG C K, XU Y. Hierarchical entropy analysis for biological signals[J]. Journal of Computational and Applied Mathematics, 2011, 236(5): 728-742.
[10] Wu S D, Wu C W, Humeau-Heurtier A. Refined scale dependent permutation entropy to analyze systems complexity[J]. Physica A: Statistical Mechanics and its Applications, 2016, 450: 454-461.
[11] LI Y, LI G, YANG Y, et al. A fault diagnosis scheme for planetary gearboxes using adaptive multi-scale morphology filter and modified hierarchical permutation entropy[J]. Mechanical Systems and Signal Processing, 2018, 105: 319-337.
[12] AZAMI H, ESCUDERO J. Amplitude-and fluctuation based dispersion entropy[J]. Entropy, 2018, 20(3): 210.
[13] AZAMI H, ARNOLD S E, SANEI S, et al. Multiscale fluctuation-based dispersion entropy and its applications to neurological diseases[J]. IEEE Access, 2019, 7: 68718-68733.
[14] 俞昆,谭继文,李善.基于多传感器信息融合的滚动轴承故障诊断研究[J].仪表技术与传感器,2016(07):97-102+107.
YU Kun, TAN Jiwen, LI Shan. Rolling Bearing Fault Diagnosis Research Based on Multi-sensor Information Fusion[J]. Instrument Technique and Sensor, 2016(07):97-102+107.
[15] 李鹏,刘澄玉,李丽萍,等.多尺度多变量模糊熵分析 [J].物理学报,2013,62(12):122-130.
LI Peng, LIU Chengyu, LI Liping, et al.Multiscale multivariate fuzzy entropy analysis[J].Acta Physica Sinica,2013,62( 12) : 120 -130.
[16] AHEMD M U, MANDIC D P. Multivariate multiscale entropy: A tool for complexity analysis of multichannel data[J]. Physical Review E,2011, 84(1):061918.
[17] PENG H, LONG F, DING C. Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy[J]. IEEE Transactions on pattern analysis and machine intelligence, 2005, 27(8): 1226-1238.
[18] Hu Q, Si X S, Qin A S, et al. Machinery fault diagnosis scheme using redefined dimensionless indicators and mRMR feature selection[J]. IEEE Access, 2020, 8: 40313-40326.
[19] Yan X, Jia M. Intelligent fault diagnosis of rotating machinery using improved multiscale dispersion entropy and mRMR feature selection[J]. Knowledge-Based Systems, 2019, 163: 450-471.
[20] HUANG Guangbing. An insight into extreme learning machines: random neurons, random features and kernels [J].Cognitive Computation,2014,6 (3) :376-390.
[21] SONG E, KE Y, YAO C, et al. Fault Diagnosis Method for High-Pressure Common Rail Injector Based on IFOA-VMD and Hierarchical Dispersion Entropy[J]. Entropy, 2019, 21(10): 923.
[22] ROSTAGHI M, AZAMI H. Dispersion entropy: A measure for time-series analysis[J]. IEEE Signal Processing Letters, 2016, 23(5): 610-614.
[23] GAN X, LU H, YANG G. Fault diagnosis method for rolling bearings based on composite multiscale fluctuation dispersion entropy[J]. Entropy, 2019, 21(3): 290.

PDF(1829 KB)

616

Accesses

0

Citation

Detail

段落导航
相关文章

/