风波耦合作用下新型多浮体平台动态响应研究

王博1,丁勤卫2,李春1,3,张立1,韩志伟1

振动与冲击 ›› 2021, Vol. 40 ›› Issue (22) : 194-202.

PDF(1940 KB)
PDF(1940 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (22) : 194-202.
论文

风波耦合作用下新型多浮体平台动态响应研究

  • 王博1,丁勤卫2,李春1,3,张立1,韩志伟1
作者信息 +

Dynamic responses of a new type of multi floating platform under the coupling effect of wind and wave

  • WANG Bo1,DING Qinwei2,LI Chun1,3,ZHANG Li1,HAN Zhiwei1
Author information +
文章历史 +

摘要

为提高平台稳定性,提出一种基于Spar平台的新型多浮体平台,采用Fortran编程通过AQWA预留接口实现与AeroDyn的集成,基于辐射/绕射理论并结合有限元方法,对比分析风波耦合作用下新平台与Spar平台的动态响应特性。结果表明:新平台幅值响应算子除纵荡方向稍大于原平台外,垂荡和纵摇方向均显著减小;两平台所受一阶波浪激振力/力矩随频率变化趋势大致相同,且新平台纵荡和纵摇方向一阶波浪激振力/力矩均小于原平台;时域分析中,新平台除纵荡响应大于原平台外,纵摇和艏摇响应均比原平台小,其中,纵摇响应减小幅度最大,艏摇响应次之;功率谱分析中,新平台三个自由度的响应谱峰值均小于原平台。

Abstract

In order to improve the stability of the platform, a new multi-floating platform based on the Spar platform is proposed. Fortran programming is used to realize the integration with AeroDyn through the AQWA reserved interface. Based on the radiation / diffraction theory and combined with the finite element method, the dynamic response characteristics of the new platform and the Spar platform under the coupling effects of wind and wave are compared and analyzed. The results show that: the heave and pitch response amplitude operator of the new platform decrease significantly except that the surge response amplitude operator is slightly larger than that of the Spar; the first-order wave excitation force / torque on the two platforms varies with frequency roughly the same, and the first-order wave excitation force / torque in the surge and pitch directions of the new platform are smaller than that of the Spar. In the time domain analysis, compared with the Spar, the pitch and yaw responses of the new platform are smaller than those of the Spar except that the surge response is larger than that of the Spar, and the pitch response decreases the most, followed by the yaw response; in the power spectrum density analysis, the response spectrum peak value of the new platform in surge, pitch and yaw are smaller than those of the Spar.

关键词

风波耦合 / 新型多浮体平台 / Spar平台 / 运动响应 / 稳定性

Key words

coupling effects of wind and wave / new multi floating platform / Spar / motion response / stability

引用本文

导出引用
王博1,丁勤卫2,李春1,3,张立1,韩志伟1. 风波耦合作用下新型多浮体平台动态响应研究[J]. 振动与冲击, 2021, 40(22): 194-202
WANG Bo1,DING Qinwei2,LI Chun1,3,ZHANG Li1,HAN Zhiwei1. Dynamic responses of a new type of multi floating platform under the coupling effect of wind and wave[J]. Journal of Vibration and Shock, 2021, 40(22): 194-202

参考文献

[1] Jahangiri V,Sun C. Integrated bi-directional vibration control and energy harvesting of monopile offshore wind turbines[J]. Ocean Engineering, 2019, 178: 260-269.
[2] 水电水利规划设计总院.中国可再生能源发展报告2018[R].北京:中国水利水电出版社,2019.
China Renewable Energy Engineering Institute. China Renewable Energy Development Report[R]. Beijing: China Water and Power Press, 2019.
[3] WANG Bo, XU Zifei, LI Chun, et al. Hydrodynamic characteristics of forced oscillation of heave plate with fractal characteristics based on floating wind turbine platform[J]. Ocean Engineering, 2020, 212: 107621.
[4] Arash Hemmati, Erkan Oterkus, Nigel Barltrop, et al. Fragility reduction of offshore wind turbines using tuned liquid column dampers[J]. Energy, 2019, 125: 105705.
[5] 丁勤卫,李春,杨阳,等.极限海况下三种漂浮式风力机平台的动态响应对比[J].水资源与水工程学报,2015,26(1):159-165.
DING Qinwei, LI Chun, YANG Yang, et al. Comparison of dynamic response for three floating wind turbine platforms under extreme sea situation[J]. Journal of Water Resources and Water Engineering, 2015, 26(1): 159-165.
[6] 黄致谦,丁勤卫,李春,等.新型漂浮式风力机半潜平台抑制摇荡运动设计研究[J].中国电机工程学报,2018,38(24):185-193+346.
HUANG Zhiqian, DING Qinwei, LI Chun, et al. Design and research on suppression swaying motion of the new Semi-submersible platform of floating wind turbine[J]. Proceedings of the CSEE, 2018, 38(24): 185-193+346.
[7] 王博,丁勤卫,李春,等.普通海况下驳船式平台漂浮式风电场平台动态响应研究[J/OL].机械工程学报:1-8[2020-08-02].http://kns.cnki.net/kcms/detail/11.2187.TH.20200724.1527.002.html.
WANG Bo, DING Qinwei, LI Chun, et al. Dynamic res-ponse of floating wind farm platform based on Barge p-latform under common sea conditions[J]. Journal of Mec-hanical Engineering: 1-8[2020-08-02]. http://kns.cnki.net/k-cms/detail/11.2187.TH.20200724.1527.002.html.
[8] 汤金桦,李春,丁勤卫,等.基于TMD的海上漂浮式风力机稳定性研究[J].热能动力工程,2017,32(8):111-116+152.
TANG Jinhua, LI Chun, DING Qinwei, et al. Research on the stability control of floating wind turbine based on TMD [J]. Journal of Engineering for Thermal Energy and Power, 2017, 32(8): 111-116+152.
[9] Vikram S. Hydrodynamic analysis of tension leg platform for offshore floating wind turbine[D]. Texas: Texas A&M University, 2011.
[10] 王博,丁勤卫,李春,等.极限海况下Spar平台漂浮式风电场平台动态响应研究[J].热能动力工程,2019,34(9):164-172.
WANG Bo, DING Qinwei, LI Chun, et al. Dynamic response of floating wind farm platform of Spar-type offshore platform under extreme sea conditions[J]. Journal of Engineering for Thermal Energy and Power, 2019, 34(9): 164-172.
[11] 丁勤卫,李春,袁伟斌,等.风波耦合作用下垂荡板对漂浮式风力机Spar平台动态响应影响[J].中国电机工程学报,2019,39(4):1113-1127.
DING Qinwei, LI Chun, YUAN Weibin, et al. Effects of heave plate on dynamic response of floating wind turbine Spar platform under the coupling effects of wind and wave[J]. Proceedings of the CSEE, 2019, 39(4): 1113-1127.
[12] Jeon S H, Cho Y U, Seo M W, et al. Dynamic response of floating substructure of spar-type offshore wind turbine with catenary mooring cables[J]. Ocean engineering, 2013, 72(11): 354-364.
[13] Zhang R, Chen C, Tang Y. Study on the Dynamic Characteristic for Spar Type Floating Foundation of Offshore Wind Turbine[J]. Applied Mechanics and Materials, 2012, 170-173:2316-2321.
[14] Aggarwal N, Manikandan R, Saha N. Nonlinear short term extreme response of spar type floating offshore wind turbines[J]. Ocean Engineering, 2017, 130:199-209.
[15] 郭双喜,陈伟民,付一钦.锚链动态效应对海上浮式风力机整体系统动响应的影响[J].中国科学:物理学 力学 天文学,2016,46(12):87-97.
GUO Shuangxi, CHEN Weimin, FU Yiqin. Impacts of moving catenary mooring-lines on the dynamic response of floating wind turbine[J]. Scientia Sinica(Physica,Mechanica and Astronomica), 2016, 46(12): 87-97.
[16] 周红杰,李春,丁勤卫,等.垂荡板对浮式风力机Spar平台的动态响应的影响[J].能源工程,2017,4:23-29+37.
ZHOU Hongjie, LI Chun, DING Qinwei, et al. Influence of heave plate on hydrodynamic characteristics of floating wind turbine Spar platform[J]. Energy Engineering, 2017, 4: 23-29+37.
[17] 唐耀,范菊,邹早建,等.浮式风机平台在规则波和定常风作用下的动力响应分析[J].中国海洋平台,2014,29(1):50-56.
TANG Yao, FAN Ju, ZOU Zaojian, et al. Dynamic response analysis of floating offshore wind turbine platform in regular waves and steady winds[J]. China Offshore Platform, 2014, 29(1): 50-56.
[18] 丁勤卫,郝文星,李春,等.基于正交设计的浮式风机Spar平台动态响应优化[J].中南大学学报(自然科学版),2017,48(8):2231-2237.
DING Qinwei, HAO Wenxing, LI Chun, et al. Dynamic response of platform of floating wind turbine based on optimization method of orthogonal design[J]. Journal of Central South University(Science and Technology), 2017, 48(8): 2231-2237.
[19] 余万,丁勤卫,李春,等.垂荡板对浮式风力机平台动态响应的影响[J].动力工程学报,2018,38(9):747-754.
YU Wan, DING Qinwei, LI Chun, et al. Influence of heave plate on dynamic response of a floating wind turbine platform[J]. Journal of Chinese Society of Power Engineering, 2018, 38(9): 747-754.
[20] 周国龙,叶舟,成欣,等.垂荡板对传统Spar平台水动力特性的影响[J].水资源与水工程学报,2015,26(4):143-148.
ZHOU Guolong, YE Zhou, CHENG Xin, et al. Influence of heave plate on hydrodynamic characteristics of traditional spar platform[J]. Journal of Water Resources and Water Engineering, 2015, 26(4): 143-148.
[21] 黄致谦,丁勤卫,李春.三种漂浮式风力机调谐质量阻尼器稳定性控制研究[J].振动与冲击,2019,38(21):112-119+147.
HUANG Zhiqian, DING Qinwei, LI Chun. TMD’s control effect on stability of three kinds of floating wind turbine[J]. Journal of Vibration and Shock, 2019, 38(21): 112-119+147..
[22] Roberston A N, Jonkman J M. Loads analysis of several offshore floating wind turbine concepts[C]// International Society of offshore and Polar Engineers 2011 Conference, Hawaii, 2011.
[23] 姚宇鑫.新概念沙漏型FDPSO主浮体和系泊系统设计方法研究[D].大连:大连理工大学,2015.
YAO Yuxin. Design and analysis on floating body and mooring system of an innovative sandglass-type FDPSO[D]. Dalian: Dalian University of Technology, 2015.
[24] 付明玉,王元慧,王成龙.海洋运载器运动建模[M].哈尔滨:哈尔滨工程大学出版社,2017.
FU Yuming, WANG Yuanhui, WANG Chenglong. Marine vehicle motion modeling[M]. Harbin: Harbin Engineering University Press, 2017.
[25] Jonkman B J, Buhl M L. TurbSim user’s Guide[R]. Colorado: National Renewable Energy Laboratory,2005.
[26] Moriarty P J, Colorado G, Craig Hansen A. AeroDyn Theory Manual[R]. Colorado: National Renewable Energy Laboratory, 2010.
[27] 王树青,梁丙臣.海洋工程波浪力学[M].青岛:中国海洋大学出版社,2013.
WANG Shuqing, LIANG Bingchen. Wave mechanics for cean engineering[M]. Qingdao: China Ocean University Press, 2013.
[28] Morison J. R, Brien M P, Johnson J W, et al. The force exerted by surface wave on piles[J]. Petroleum Transactions, AIME, 1950, 2(5): 149-154.
[29] 陶建华.水波的数值模拟[M].天津:天津大学出版社,2005.
TAO Jianhua. The numerical simulation of water wave [M]. Tianjin: Tianjin university press, 2005.
[30] 董艳秋.深海采油平台波浪载荷及响应[M].天津:天津大学出版社,2005.
Dong Yanqiu. Wave loads and response of the oil-extractionplatform in deep ocean [M]. Tianjin: Tianjin university press, 2005.
[31] 赵玉娜.Spar型海上浮式风力机系统运动耦合计算方法及性能研究[D].哈尔滨:哈尔滨工程大学,2014.
ZHAO Yuna. Study on coupled methods and performance of a Spar-type offshore floating wind turbine system[J]. Harbin: Harbin Engineering University, 2014.
[32] 黄致谦,丁勤卫,李春.新型垂荡板对漂浮式风力机半潜式平台垂荡运动的抑制效果研究[J].动力工程学报,2019,39(5):402-408.
HUANG Zhiqian, DING Qinwei, LI Chun. Research on heave motion inhibition for thesemi-submersible platform of floating wind turbines with new heave plates[J]. Journal of Chinese Society of Power Engineering, 2019, 39(5): 402-408.
[33] KORDI. Concept design and analysis of floating wind turbine platforms (SHI-KORDI Joint Research)[R]. Absan, Korea: Korea Ocean Research and Decelopment Institute.
[34] 韩清凯,唐世浩,沈意平,等.漂浮运动对风力机气动特性的影响分析[J].计算力学学报,2016,33(3):351-356.
HAN Qingkai, TANG Shihao, SHEN Yiping, et al. Effect of floating foundation motion on the aerodynamic characteristics of the floating offshore wind turbine[J]. Chinese Journal of Computational Mechanics, 2016, 33(3): 351-356.

PDF(1940 KB)

1858

Accesses

0

Citation

Detail

段落导航
相关文章

/