形状变化对空腔噪声的抑制效果

宁舜山1,张倩2,肖伟1,李振才1,宁方立3,杨林森1

振动与冲击 ›› 2021, Vol. 40 ›› Issue (22) : 209-215.

PDF(1817 KB)
PDF(1817 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (22) : 209-215.
论文

形状变化对空腔噪声的抑制效果

  • 宁舜山1,张倩2,肖伟1,李振才1,宁方立3,杨林森1
作者信息 +

Effect of the shape change of cavity on aerodynamic noise suppression

  • NING Shunshan1, ZHANG Qian2, XIAO Wei1, LI Zhencai1, NING Fangli3, YANG Linsen1
Author information +
文章历史 +

摘要

针对空腔噪声问题,为了进一步探究空腔形状变化对空腔噪声的抑制效果,采用大涡模拟与计算气动声学相结合的方法对典型空腔结构进行了数值仿真研究。研究发现,随着空腔前壁倾斜角β的增大,空腔噪声主模态声压级整体呈下降趋势,但两者并非线性关系,并且空腔噪声总声压级也会随之降低。此外,当空腔前壁倾斜角β增大至一定值时,空腔噪声主模态频率会大幅向低频部分移动。空腔噪声主模态声压级和总声压级的降低以及主模态频率的大幅移动会有效改善空腔内的强噪声环境,避免空腔结构及腔内武器装备发生声疲劳破坏。

Abstract

Aiming at the problem of cavity noise, in order to further explore the effect of cavity shape change on cavity noise suppression, Large Eddy Simulation (LES) and Computational Aeroacoustics (CAA) are used to simulate typical cavity. It is found that with the increase of β, the Sound Pressure Level (SPL) of the main mode of the cavity noise decreases in the overall trend, but the relationship between them is not linear, and the Overall Sound Pressure Level (OASPL) of the cavity noise also decreases. In addition, the frequency of the main mode of the cavity noise will move to the lower frequency part when β increases to a certain value. The reduction of the main mode SPL and OASPL of the cavity noise and the jump movement of the main mode frequency will effectively improve the strong noise environment in the cavity and avoid the acoustic fatigue damage of the cavity structure and the weapon equipment in the cavity.

关键词

空腔噪声 / 声压级 / 总声压级 / 前壁倾斜角 / 噪声控制

Key words

 cavity noise / sound pressure level / overall sound pressure level / the slant angle of front wall / noise suppression

引用本文

导出引用
宁舜山1,张倩2,肖伟1,李振才1,宁方立3,杨林森1. 形状变化对空腔噪声的抑制效果[J]. 振动与冲击, 2021, 40(22): 209-215
NING Shunshan1, ZHANG Qian2, XIAO Wei1, LI Zhencai1, NING Fangli3, YANG Linsen1. Effect of the shape change of cavity on aerodynamic noise suppression[J]. Journal of Vibration and Shock, 2021, 40(22): 209-215

参考文献

[1] Cattafesta III L N, Song Q, Williams D R, et al. Active control of flow-induced cavity oscillations[J]. Progress in Aerospace Sciences, 2008, 44(7-8): 479-502.
[2] Ross J A, Peto J W. The effect of cavity shaping, front spoilers and ceiling bleed on loads acting on stores, and on the unsteady environment within weapon bays[J]. QinetiQ report, 1997.
[3] Saddington A J, Thangamani V, Knowles K. Comparison of passive flow control methods for a cavity in transonic flow[J]. Journal of Aircraft, 2016, 53(5): 1439-1447.
[4] MacManus D G, Doran D S. Passive control of transonic cavity flow[J]. Journal of Fluids Engineering, 2008, 130(6): 064501.
[5] Omer A, Mohany A. The effect of high frequency vortex generator on the acoustic resonance excitation in shallow rectangular cavities[J]. Canadian Acoustics, 2014, 42(3).
[6] Schmit R F, Raman G. High and low frequency actuation com-parison for a weapons bay cavity[J]. International Journal of Aeroacoustics, 2006, 5(4): 395-414.
[7] Vikramaditya N S, Kurian J. Pressure oscillations from cavities with ramp[J]. AIAA journal, 2009, 47(12): 2974-2984.
[8] Maurya P K, Rajeev C, Vaidyanathan A. Effect of aft wall offset and ramp on pressure oscillation from confined super-sonic flow over cavity[J]. Experimental Thermal and Fluid Science, 2015, 68: 559-573.
[9] Pey Y Y, Chua L P. Effects of trailing wall modifications on cavity wall pressure[J]. Experimental Thermal and Fluid Sci-ence, 2014, 57: 250-260.
[10] 余培汛, 白俊强, 郭博智, 等. 剪切层形态对开式空腔气动噪声的抑制[J]. 振动与冲击, 2015, 34(1): 156-164.
Yu P X, Bai J Q, Guo B Z, et al. Suppression of aerodynamic noise by altering the form of shear layer in open cavity[J]. Journal of Vibration and Shock, 2015, 34(1): 156-164(in Chi-nese).
[11] Arunajatesan S, Kannepalli C, Sinha N, et al. Suppression of cavity loads using leading-edge blowing[J]. AIAA journal, 2009, 47(5): 1132-1144.
[12] George B, Ukeiley L S, Cattafesta L N, et al. Control of Three-Dimensional Cavity Flow Using Leading-Edge Slot Blow-ing[C]//53rd AIAA Aerospace Sciences Meeing. 2015: 1059.
[13] Bennett G J, Okolo P N, Zhao K, et al. Cavity Resonance Sup-pression Using Fluidic Spoilers[J]. AIAA Journal, 2018: 1-14.
[14] Cattafesta L, Mathew J, Kurdila A. Modeling and design of piezoelectric actuators for fluid flow control[J]. SAE Transactions,2000,109(1):1088-1095.
[15] Cattafesta L N, Garg S, Shukla D. Development of piezoelec-tric actuators for active flow control[J]. AIAA journal, 2001, 39(8): 1562-1568.
[16] Huang X, Zhang X. Streamwise and spanwise plasma actua-tors for flow-induced cavity noise control[J]. Physics of Fluids, 2008, 20(3): 037101.
[17] Yugulis K, Hansford S, Gregory J W, et al. Control of high subsonic cavity flow using plasma actuators[J]. AIAA journal, 2014, 52(7): 1542-1554.
[18] de Jong A, Bijl H. Corner-type plasma actuators for cavity flow-induced noise control[J]. AIAA journal, 2013, 52(1): 33-42.
[19] Henshaw M J. M219 cavity case[R]. DTIC Document. East Riding of Yorkshire: British Aerospace Operations Ltd Brough Military Aircraft and Aerostructures, 2000.
[20] De Henshaw M J C. M219 cavity case: Verification and validation data for computational unsteady aerodynamics[J]. Techn. Rep. RTO-TR-26, AC/323 (AVT) TP/19, QinetiQ, UK, 2002, 453.
[21] Foster G W, Ross J A, Ashworth R M. Weapon bay aerodynamics wind tunnel trials and CFD modeling by QinetiQ UK[C]//RTO/AVT Symposium on Flow-Induced Unsteady Loads and the Impact on Military Applications, Budapest, Hungary. 2005.
[22] Henshaw M J. M219 cavity case[R]. DTIC Document. East Riding of Yorkshire: British Aerospace Operations Ltd Brough Military Aircraft and Aerostructures, 2000.
[23] Mendona F, Allen R, de Charentenay J, et al. CFD prediction of narrowband and broadband cavity acoustics at M=0.85[C]//9th AIAA/CEAS Aeroacoustic Conf. Exhibition. Hilton Head: AIAA, 2003: 3303.
[24] Chen X, Sandham N D, Zhang X. Cavity flow noise predictions[R]. Final Report for MSTARR DARP, Southampton: University of Southampton, 2007.
[25] Rowley C, Colonius T, Murray R. POD based models of self-sustained oscillations in the flow past an open cavity[C]//6th Aeroacoustics Conference and Exhibit. Reston: AIAA, 2000: 1969.

PDF(1817 KB)

516

Accesses

0

Citation

Detail

段落导航
相关文章

/