为精确分析精密包装弹性支撑缓冲系统振动特性,本文提出了一种考虑横向弹簧径向刚度的六自由度动力学数学修正模型并完成了求解验证。首先根据能量法建立了弹性支承缓冲系统的六自由度动力学数学模型,进一步地引入横向弹簧的径向刚度,提出了相应的动力学修正模型,然后利用四阶龙格库塔法对各因素下的精密包装弹性支撑缓冲系统振动特性进行了数值分析,得到各工况及多因素下的振动特性对比结果。最后,通过多因素试验对该理论修正模型进行了验证。结果表明:精密包装弹性支撑缓冲系统纵向固有频率随着横向弹簧刚度及轴向压紧力的增大而增大,振动响应幅值在共振点处明显提高,峰值点也明显后移,实际运输过程中需注意弹性支撑缓冲系统横向弹簧刚度及其轴向预压力的选择与调节。分析精密包装弹性支撑缓冲系统振动特性时考虑横向弹簧径向刚度的影响将有助于提高系统振动特性的分析精度。
Abstract
In order to accurately analyze the vibration characteristics of the elastic support and cushioning system of precision packaging, A six-degree-of-freedom dynamics mathematical improvement model was proposed to consider the radial stiffness of the transverse spring and the solution verification was completed. Firstly, a six-degree-of-freedom dynamics mathematical model of the elastic support cushioning system was established according to the energy method.Furthermore,the radial stiffness of the transverse spring was described, and the corresponding dynamic correction model was proposed. After that, the fourth-order Runge-Kutta method was used to analyze the vibration characteristics of the precision packaging elastic support and cushioning system under the multiple factors conditions. Some results of the numerical analysis and the comparison were obtained. Finally, the modified theoretical model was verified through multi-factor experiments. The results show that the longitudinal natural frequency of the precision packaging elastic support cushioning system increases with the increase of the transverse spring stiffness and the axial compression force, the vibration response amplitude increases significantly at the resonance point, and the peak point also shifts back significantly. In the actual transportation process, attention should be paid to the selection and adjustment of the lateral spring stiffness and its axial pre-pressure. As a result, it will improve the analysis accuracy of the system vibration characteristics to consider the influence of the radial stiffness of the transverse spring.
关键词
弹性支撑缓冲系统 /
振动特性 /
径向刚度 /
数值分析 /
试验验证
{{custom_keyword}} /
Key words
elastic support buffer system /
vibration characteristics /
radial stiffness /
numerical analysis /
experimental verification
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 王蕾,陈安军.悬挂式弹簧包装系统的冲击特性研究[J].包装工程,2011,32(09):33-36.
WANG Lei, CHEN An-jun. Study on Shock Characteristics of Suspension Spring Packaging System[J].Pacing engineering,2011,32(09):33-36.
[2] 李辉,陈安军.悬挂系统易损件跌落破损评价[J].噪声与振动控制,2018,38(01):85-89.
LI Hui, CHEN An-jun.Dropping Damage Evaluation of Vulnerable Components forSuspension Systems[J].Noise and vibration control,2018,38(01):85-89.
[3] 李宏卫.非线性自治包装系统动态响应研究[D].无锡:江南大学,2017.
LiHongwei.Studyon Dynamic Response of Nonlinear Autonomous Packaging System.[D].Wuxi:Jiangnan University,2017.
[4] 郝蒙.具有杆式易损件的包装系统动力学特性研究[D].无锡:江南大学,2015.
Hao Meng.The Dynamical Characteristics of Packaging System with Bar Type Critical Components[D].Wuxi:Jiangnan University,2015.
[5] Scedilakar Gürkan. The Effect of Axial Force on the Free Vibration of an Euler-Bernoulli Beam Carrying a Number of Various Concentrated Elements[J].Shock and Vibration,2013,20(03):357-367.
[6] 卢富德,陶伟明,高德.瓦楞纸板串联缓冲系统动力学响应[J].振动与冲击,2012,31(21):30-32.
LU Fude,Tao Weiming,GaoDe. Dynamic response of a series cushioning packaging system made of multi-layer corrugated paperboard.[J].Journal of vibration and shock,2012,31(21):30-32.
[7] Sek M A, Rouillard V, Tarash H, et al. Enhancement of cushioning performance with paperboard crumple inserts[J].Packaging Technology and Science, 2005,18(05):273-278.
[8] Jun Wang,Zhi-Wei Wang,Fang Duan.Dropping shock response of corrugated paperboard cushioning packaging system.2013,19(3):336-340.
[9] 於崇铭,任风云,田丰.航空弹药铁路运输振动响应模型及影响因素分析[J].兵器装备工程学报,2017,38(11):151-154.
Yu Chongming,Ren Fengyun,Tian Feng. Aviation Ammunition Vibration Response Model and Influnece Factors Analysis of Railway Transportation.[J]. Journal of Ordnance Equipment Engineering,2017,38(11):151-154.
[10] Gao D, Lu F D. Study on Shock Response of Cushion Packaging System Based on Combined Model Using Hyperbolic Tangent and Tangent Functions with Consideration of Rotation Effect[J].Applied Mechanics and Materials, 2011, (1468):1161-1166.
[11] 卢富德,高德.植物纤维餐具碗在运输包装环境抗冲击行为有限元分析[J].振动与冲击,2015,34(6):137-139.
Lu Fude,Gao De. Finite element analysis for anti-impact behavior of biogradable plant fibre bowls with foam cushioning packaging[J].Journal of vibration and shock,,2015,34(6):137-139.
[12]卢富德,滑广军,王丽姝等.梯形聚乙烯泡沫结构动态压缩响应有限元分析[J]. 振动与冲击, 2019, 38(14): 234-238.
Lu Fede,Hua Guangjun,Wang Lishu,etc.Finite element analysis of dynamic compression response of trapezoidal polyethylene foam structure.[J].Journal of vibration and shock,2019, 38(14): 234-238.
[13]刘斯琪.家用电子产品的隔振缓冲研究及实验[D].天津:天津商业大学,2019
Liu Siqi. Research and Experiment on Vibration Isolation of Household Electronic Products[D]. TianJin:TianJin University of Commerce,2019
[14]张策.机械动力学(第二版)[M].北京:高等教育出版社,2008
Zhang Ce. Machinery Dynamics (Second Edition) [M]. Beijing: Higher Education Press, 2008
[15]汪曾祥,魏先英,刘祥至.弹簧设计手册[M].1986.
Wang Zengxiang, Wei Xianying, Liu Xiangzhi. Spring Design Manual[M].1986.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}