新型三角形结构电磁式振动能量采集器的设计与分析

陈春明1,袁天辰2,陈立群1,3,4

振动与冲击 ›› 2021, Vol. 40 ›› Issue (22) : 52-59.

PDF(1788 KB)
PDF(1788 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (22) : 52-59.
论文

新型三角形结构电磁式振动能量采集器的设计与分析

  • 陈春明1,袁天辰2,陈立群1,3,4
作者信息 +

Design and analysis of a novel electromagnetic vibrational energy harvester with triangular structure

  • CHEN Chunming1,YUAN Tianchen2,CHEN Liqun1,3,4
Author information +
文章历史 +

摘要

从环境普遍存在的振动中采集能量是目前研究的重点和热点。本文提出了一种基于三角形位移放大结构的电磁式振动能量采集器,通过杠杆结构放大磁铁和线圈之间的相对位移,提高振动能量转换效果。通过杠杠末端设置弹簧,形成三自由度非线性动力系统,拓宽了系统的采集器频带。利用龙格库塔方法,数值分析了系统的动力学响应,结果表明所设计的采集器具有两个能量采集频段,其中一个覆盖5-10 Hz以下的低频范围,另一个覆盖20-45Hz频段。通过分析不同采集器设计参数对振动能量采集效果的影响,发现增加杠杆结构的装配角、下部滑块质量以及弹簧刚度有利于低频范围的能量采集,而减小装配角和滑块质量则能够提高第二个采集频段的输出电压。通过构造等效的线性振动能量采集器进行对比发现,得益于杠杠的位移放大作用,相同激励下三角形振动能量采集器的最大输出电压是对比线性竖直振动能量采集系统的1.76倍,这些特性使这种新型采集器能够针对低频、宽域的环境振动取得良好的能量采集效果。

Abstract

The energy harvesting from vibrations that are ubiquitous in the environment is the focus and hotspot of current research. In this paper, an electromagnetic vibrational energy harvester based on a triangular displacement amplification structure is proposed, which amplifies the relative displacement between the magnet and the coil through the lever structure and improves the effect of vibration energy conversion. Springs are set at the ends of the levers to form a three-degree-of-freedom nonlinear dynamic system, which broadens the frequency band of the system's collector. Using the Runge-Kutta method, the dynamic response of the system is numerically analyzed. The results show that the designed system has two energy harvesting frequency bands, one of which covers the low frequency range below 5-10 Hz, and the other covers the 20-45 Hz frequency band. By analyzing the influence of different design parameters on the vibration energy harvesting effect, it is found that increasing the assembly angle of the lever structure, the mass of the lower slider and the spring stiffness is beneficial to energy harvesting in the low frequency range, while reducing the assembly angle and slider quality can improve the output voltage of the second acquisition frequency band. Comparing the designed system and the equivalent linear vibration energy harvester, it is found that thanks to the displacement amplification effect of the levers, the maximum output voltage of the triangular vibration energy harvester under the same excitation is 1.76 times that of the linear vertical vibration energy harvesting system. These characteristics make this new type of harvester can achieve good energy harvesting effects for low-frequency and wide-range environmental vibrations.

关键词

环境振动 / 能量采集 / 电磁感应 / 非线性

Key words

Environmental vibration / Energy harvesting / Electromagnetic induction / Nonlinear

引用本文

导出引用
陈春明1,袁天辰2,陈立群1,3,4. 新型三角形结构电磁式振动能量采集器的设计与分析[J]. 振动与冲击, 2021, 40(22): 52-59
CHEN Chunming1,YUAN Tianchen2,CHEN Liqun1,3,4. Design and analysis of a novel electromagnetic vibrational energy harvester with triangular structure[J]. Journal of Vibration and Shock, 2021, 40(22): 52-59

参考文献

[1] Moss S D, Payne O R, Hart G A, et al. Scaling and power density metrics of electromagnetic vibration energy harvesting devices[J]. Smart Materials and Structures, 2015, 24(2): 023001.
[2] 王志霞, 王炜, 张琪昌. 一类电磁式薄膜振动能量采集器动力学建模与非线性分析[J]. 振动与冲击, 2019, 38(15): 127-133.
WANG Zhixia, WANG Wei, ZHANG Qichang. Dynamic modeling and nonlinear analysis for a type electromagnetic membrane vibration energy harvester[J]. Journal of Vibration and Shock, 2019, 38(15): 127-133.
[3] Moure A, Rodríguez M A I, Rueda S H, et al. Feasible integration in asphalt of piezoelectric cymbals for vibration energy harvesting[J]. Energy conversion and management, 2016, 112: 246-253.
[4] 吴义鹏, 季宏丽, 裘进浩, 等. 共振频率可调式非线性压电振动能量收集器[J]. 振动与冲击, 2017, 36(5): 12-16.
WU Yipeng, JI Hongli, QIU Jinhao, et al. A nonlinear piezoelectric vibration energy harvesting device with tunable resonance frequencies[J]. Journal of Vibration and Shock, 2017, 36(5): 12-16.
[5] Zhang Y, Wang T, Zhang A, et al. Electrostatic energy harvesting device with dual resonant structure for wideband random vibration sources at low frequency[J]. Review of Scientific Instruments, 2016, 87(12): 125001.
[6] Naifar S, Bradai S, Viehweger C, et al. Survey of electromagnetic and magnetoelectric vibration energy harvesters for low frequency excitation[J]. Measurement, 2017, 106: 251-263.
[7] Vocca H, Neri I, Travasso F, et al. Kinetic energy harvesting with bistable oscillators[J]. Applied Energy, 2012, 97: 771-776.
[8] Abdelkefi A. Aeroelastic energy harvesting: A review[J]. International Journal of Engineering Science, 2016, 100: 112-135.
[9] 刘慧芳, 刘成龙, 谷艳玲, 等. 利用Galfenol薄片的环境振动能量收集装置[J]. 振动与冲击, 2019, 38(15): 202-230.
LIU Huifang,LIU Chenglong,GU Yanling, et al. An environmental vibration energy harvesting device using Galfenol slices[J]. Journal of Vibration and Shock, 2019, 38(15): 202-230.
[10] 芮小博, 李一博, 刘悦, 等. 垂向动磁式压电振动能量收集器建模及实验研究[J]. 振动与冲击, 2020, 39(08): 215-221.
RUI Xiaobo, LI Yibo, LIU Yue, et al. Modelling and experimental study of vertical moving magnetic piezoelectric vibration energy harvester [J]. Journal of Vibration and Shock, 2020, 39(08): 215-221.
[11] Li S, Crovetto A, Peng Z, et al. Bi-resonant structure with piezoelectric PVDF films for energy harvesting from random vibration sources at low frequency[J]. Sensors and Actuators A: Physical, 2016, 247: 547-554.
[12] Zhou S, Zuo L. Nonlinear dynamic analysis of asymmetric tristable energy harvesters for enhanced energy harvesting[J]. Communications in Nonlinear Science and Numerical Simulation, 2018, 61: 271-284.
[13] Zhou Z, Qin W, Zhu P. Improve efficiency of harvesting random energy by snap-through in a quad-stable harvester[J]. Sensors and Actuators A: Physical, 2016, 243: 151-158.
[14] Harne R L, Sun A, Wang K W. Leveraging nonlinear saturation-based phenomena in an L-shaped vibration energy harvesting system[J]. Journal of Sound and Vibration, 2016, 363: 517-531.
[15] Deng H, Wang Z, Du Y, et al. A seesaw-type approach for enhancing nonlinear energy harvesting[J]. Applied Physics Letters, 2018, 112(21): 213902.
[16] Zhou K, Dai H L, Abdelkefi A, et al. Theoretical modeling and nonlinear analysis of piezoelectric energy harvesters with different stoppers[J]. International Journal of Mechanical Sciences, 2020, 166: 105233.
[17] Li M, Jing X. Novel tunable broadband piezoelectric harvesters for ultralow-frequency bridge vibration energy harvesting[J]. Applied Energy, 2019, 255: 113829.
[18] 张允, 王战江, 蒋淑兰, 等. 振动能量收集技术的研究现状与展望[J]. 机械科学与技术, 2019, 38(07): 985-1018.
ZHANG Yun, WANG Zhanjiang, JIANG Shulan, et al. Retrospectives and perspectives of vibration energy harvest technologies[J]. Mechanical Science and Technology for Aerospace Engineering, 2019, 38(07): 985-1018.
[19] Siang J, Lim M H, Salman Leong M. Review of vibration‐based energy harvesting technology: Mechanism and architectural approach[J]. International Journal of Energy Research, 2018, 42(5): 1866-1893.
[20] Pennisi G, Mann B P, Naclerio N, et al. Design and experimental study of a Nonlinear Energy Sink coupled to an electromagnetic energy harvester[J]. Journal of Sound and Vibration, 2018, 437: 340-357.
[21] Takeya K, Sasaki E, Kobayashi Y. Design and parametric study on energy harvesting from bridge vibration using tuned dual-mass damper systems[J]. Journal of Sound and Vibration, 2016, 361: 50-65.
[22] Yuan T, Yang J, Chen L Q. Nonlinear characteristic of a circular composite plate energy harvester: experiments and simulations[J]. Nonlinear Dynamics, 2017, 90(4): 2495-2506.
[23] 张颖, 曹军义, 朱红宇. 轴承自供能监测的径向电磁式能量俘获建模与实验研究[J]. 固体力学学报, 2019, 40(05): 458-466.
ZHANG Ying, CAO Junyi, ZHU Hongyu. Modeling and experimental investigation of radial electromagnetic energy harvesting for self-powered bearing condition monitoring[J]. Chinese Journal of Solid Mechanics, 2019, 40(05): 458-466.
[24] 代胡亮, 林时想, 张岚斌, 等. 基于人体运动的压电-电磁混合式振动能量采集研究[J]. 固体力学学报, 2019, 40(05): 427-440.
DAI Huliang, LIN Shixiang, ZHANG Lanbin, et al. A new hybrid energy harvester for human motion power generation[J]. Chinese Journal of Solid Mechanics, 2019, 40(05): 427-440.
[25] Kuang Y, Zhu M. Parametrically excited nonlinear magnetic rolling pendulum for broadband energy harvesting[J]. Applied Physics Letters, 2019, 114(20): 203903.
[26] Thomson G, Lai Z, Val D V, et al. Advantages of nonlinear energy harvesting with dielectric elastomers[J]. Journal of Sound and Vibration, 2019, 442: 167-182.
[27] Wei C, Zhang K, Hu C, et al. A tunable nonlinear vibrational energy harvesting system with scissor-like structure[J]. Mechanical Systems and Signal Processing, 2019, 125: 202-214.
[28] Worden K. Nonlinearity in structural dynamics: detection, identification and modelling[M]. CRC Press, 2019.
[29] 袁天辰,杨俭,陈立群.关于非线性系统辨识的恢复力曲面法和希尔伯特变换法[J]. 振动与冲击, 2019, 38(01): 73-78.
YUAN Tianchen, YANG Jian, CHEN Liqun. Restoring force surface method and Hilbert transform one for nonlinear system identification[J]. Journal of Vibration and Shock, 2019, 38(01): 73-78.

 

PDF(1788 KB)

532

Accesses

0

Citation

Detail

段落导航
相关文章

/