[1] Moss S D, Payne O R, Hart G A, et al. Scaling and power density metrics of electromagnetic vibration energy harvesting devices[J]. Smart Materials and Structures, 2015, 24(2): 023001.
[2] 王志霞, 王炜, 张琪昌. 一类电磁式薄膜振动能量采集器动力学建模与非线性分析[J]. 振动与冲击, 2019, 38(15): 127-133.
WANG Zhixia, WANG Wei, ZHANG Qichang. Dynamic modeling and nonlinear analysis for a type electromagnetic membrane vibration energy harvester[J]. Journal of Vibration and Shock, 2019, 38(15): 127-133.
[3] Moure A, Rodríguez M A I, Rueda S H, et al. Feasible integration in asphalt of piezoelectric cymbals for vibration energy harvesting[J]. Energy conversion and management, 2016, 112: 246-253.
[4] 吴义鹏, 季宏丽, 裘进浩, 等. 共振频率可调式非线性压电振动能量收集器[J]. 振动与冲击, 2017, 36(5): 12-16.
WU Yipeng, JI Hongli, QIU Jinhao, et al. A nonlinear piezoelectric vibration energy harvesting device with tunable resonance frequencies[J]. Journal of Vibration and Shock, 2017, 36(5): 12-16.
[5] Zhang Y, Wang T, Zhang A, et al. Electrostatic energy harvesting device with dual resonant structure for wideband random vibration sources at low frequency[J]. Review of Scientific Instruments, 2016, 87(12): 125001.
[6] Naifar S, Bradai S, Viehweger C, et al. Survey of electromagnetic and magnetoelectric vibration energy harvesters for low frequency excitation[J]. Measurement, 2017, 106: 251-263.
[7] Vocca H, Neri I, Travasso F, et al. Kinetic energy harvesting with bistable oscillators[J]. Applied Energy, 2012, 97: 771-776.
[8] Abdelkefi A. Aeroelastic energy harvesting: A review[J]. International Journal of Engineering Science, 2016, 100: 112-135.
[9] 刘慧芳, 刘成龙, 谷艳玲, 等. 利用Galfenol薄片的环境振动能量收集装置[J]. 振动与冲击, 2019, 38(15): 202-230.
LIU Huifang,LIU Chenglong,GU Yanling, et al. An environmental vibration energy harvesting device using Galfenol slices[J]. Journal of Vibration and Shock, 2019, 38(15): 202-230.
[10] 芮小博, 李一博, 刘悦, 等. 垂向动磁式压电振动能量收集器建模及实验研究[J]. 振动与冲击, 2020, 39(08): 215-221.
RUI Xiaobo, LI Yibo, LIU Yue, et al. Modelling and experimental study of vertical moving magnetic piezoelectric vibration energy harvester [J]. Journal of Vibration and Shock, 2020, 39(08): 215-221.
[11] Li S, Crovetto A, Peng Z, et al. Bi-resonant structure with piezoelectric PVDF films for energy harvesting from random vibration sources at low frequency[J]. Sensors and Actuators A: Physical, 2016, 247: 547-554.
[12] Zhou S, Zuo L. Nonlinear dynamic analysis of asymmetric tristable energy harvesters for enhanced energy harvesting[J]. Communications in Nonlinear Science and Numerical Simulation, 2018, 61: 271-284.
[13] Zhou Z, Qin W, Zhu P. Improve efficiency of harvesting random energy by snap-through in a quad-stable harvester[J]. Sensors and Actuators A: Physical, 2016, 243: 151-158.
[14] Harne R L, Sun A, Wang K W. Leveraging nonlinear saturation-based phenomena in an L-shaped vibration energy harvesting system[J]. Journal of Sound and Vibration, 2016, 363: 517-531.
[15] Deng H, Wang Z, Du Y, et al. A seesaw-type approach for enhancing nonlinear energy harvesting[J]. Applied Physics Letters, 2018, 112(21): 213902.
[16] Zhou K, Dai H L, Abdelkefi A, et al. Theoretical modeling and nonlinear analysis of piezoelectric energy harvesters with different stoppers[J]. International Journal of Mechanical Sciences, 2020, 166: 105233.
[17] Li M, Jing X. Novel tunable broadband piezoelectric harvesters for ultralow-frequency bridge vibration energy harvesting[J]. Applied Energy, 2019, 255: 113829.
[18] 张允, 王战江, 蒋淑兰, 等. 振动能量收集技术的研究现状与展望[J]. 机械科学与技术, 2019, 38(07): 985-1018.
ZHANG Yun, WANG Zhanjiang, JIANG Shulan, et al. Retrospectives and perspectives of vibration energy harvest technologies[J]. Mechanical Science and Technology for Aerospace Engineering, 2019, 38(07): 985-1018.
[19] Siang J, Lim M H, Salman Leong M. Review of vibration‐based energy harvesting technology: Mechanism and architectural approach[J]. International Journal of Energy Research, 2018, 42(5): 1866-1893.
[20] Pennisi G, Mann B P, Naclerio N, et al. Design and experimental study of a Nonlinear Energy Sink coupled to an electromagnetic energy harvester[J]. Journal of Sound and Vibration, 2018, 437: 340-357.
[21] Takeya K, Sasaki E, Kobayashi Y. Design and parametric study on energy harvesting from bridge vibration using tuned dual-mass damper systems[J]. Journal of Sound and Vibration, 2016, 361: 50-65.
[22] Yuan T, Yang J, Chen L Q. Nonlinear characteristic of a circular composite plate energy harvester: experiments and simulations[J]. Nonlinear Dynamics, 2017, 90(4): 2495-2506.
[23] 张颖, 曹军义, 朱红宇. 轴承自供能监测的径向电磁式能量俘获建模与实验研究[J]. 固体力学学报, 2019, 40(05): 458-466.
ZHANG Ying, CAO Junyi, ZHU Hongyu. Modeling and experimental investigation of radial electromagnetic energy harvesting for self-powered bearing condition monitoring[J]. Chinese Journal of Solid Mechanics, 2019, 40(05): 458-466.
[24] 代胡亮, 林时想, 张岚斌, 等. 基于人体运动的压电-电磁混合式振动能量采集研究[J]. 固体力学学报, 2019, 40(05): 427-440.
DAI Huliang, LIN Shixiang, ZHANG Lanbin, et al. A new hybrid energy harvester for human motion power generation[J]. Chinese Journal of Solid Mechanics, 2019, 40(05): 427-440.
[25] Kuang Y, Zhu M. Parametrically excited nonlinear magnetic rolling pendulum for broadband energy harvesting[J]. Applied Physics Letters, 2019, 114(20): 203903.
[26] Thomson G, Lai Z, Val D V, et al. Advantages of nonlinear energy harvesting with dielectric elastomers[J]. Journal of Sound and Vibration, 2019, 442: 167-182.
[27] Wei C, Zhang K, Hu C, et al. A tunable nonlinear vibrational energy harvesting system with scissor-like structure[J]. Mechanical Systems and Signal Processing, 2019, 125: 202-214.
[28] Worden K. Nonlinearity in structural dynamics: detection, identification and modelling[M]. CRC Press, 2019.
[29] 袁天辰,杨俭,陈立群.关于非线性系统辨识的恢复力曲面法和希尔伯特变换法[J]. 振动与冲击, 2019, 38(01): 73-78.
YUAN Tianchen, YANG Jian, CHEN Liqun. Restoring force surface method and Hilbert transform one for nonlinear system identification[J]. Journal of Vibration and Shock, 2019, 38(01): 73-78.