车辆半主动悬架广义天棚理论控制研究

杨艺,陈龙,汪若尘,张孝良,刘昌宁

振动与冲击 ›› 2021, Vol. 40 ›› Issue (22) : 66-74.

PDF(1884 KB)
PDF(1884 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (22) : 66-74.
论文

车辆半主动悬架广义天棚理论控制研究

  • 杨艺,陈龙,汪若尘,张孝良,刘昌宁
作者信息 +

Semi-active suspension control based on the general theory of skyhook control

  • YANG Yi,CHEN Long,WANG Ruochen,ZHANG Xiaoliang,LIU Changning
Author information +
文章历史 +

摘要

为能充分发挥惯容器作用,全面提升悬架性能。本文基于机械阻抗传递函数,对天棚控制算法进行推广,提出广义天棚理论,研究机械阻抗传递函数中刚度特性、阻尼特性及惯性特性对车辆悬架性能的影响。基于鱼群算法优化求解广义天棚结构并对其进行半主动实现。设计了一种可控惯容器装置,实现了惯性力的可控,并对其非线性进行了研究分析。结果表明,本文所提出的广义天棚控制半主动悬架,相比传统被动悬架和天棚阻尼控制悬架,能够进一步提升悬架性能,改善乘坐舒适性。

Abstract

In order to take the maximum advantage of the inerter and improve the performance of vehicle suspension, the general theory of skyhook control theory is proposed. Based on the mechanical impedance, the control strategy of skyhook is generalized. The impacts of stiffness, damper and inerter on the vehicle suspension are analyzed. The general skyhook structure is realized by semi-active suspension with the parameters optimized by fish swarm algorithm. A new controllable-inerter is designed and the nonlinear analysis is also carried out. The results show that the semi-active suspension with general skyhook control has better performance than traditional passive suspension and skyhook damper controlled suspension.

Key words

  / Mechanical Impedance, Skyhook Control, Controllable-Inerter, Ride Comfort

引用本文

导出引用
杨艺,陈龙,汪若尘,张孝良,刘昌宁. 车辆半主动悬架广义天棚理论控制研究[J]. 振动与冲击, 2021, 40(22): 66-74
YANG Yi,CHEN Long,WANG Ruochen,ZHANG Xiaoliang,LIU Changning. Semi-active suspension control based on the general theory of skyhook control[J]. Journal of Vibration and Shock, 2021, 40(22): 66-74

参考文献

[1] 方锡邦, 陈无畏, 吴乐, 等. 模糊控制技术及其在汽车半主动悬架中应用[J]. 机械工程学报, 1999, (03):99-101.
FANG Xi-bang, CHEN Wu-wei, WU Le, et al. Fuzzy control technology and the application to vehicle semi-active suspension[J]. Chinese Journal of Mechanical Engineering, 1999,(03):99-101.
[2] 杜甫,毛明,陈轶杰,等.基于动力学模型与参数优化的ISD悬架结构设计及性能分析[J].振动与冲击,2014, 33(6):59-65.
DU Fu,MAO Ming,CHEN Yi-jie,et al. Structure design and performance analysis of Inerter-spring-damper suspension based on dynamic model and parameter optimization[J]. Journal of Vibration and Shock, 2014, 33(6):59-65.
[3] Hu Y, Chen M, Xu S, et al. Semiactive inerter and its application in adaptive tuned vibration absorbers[J]. IEEE Transactions on Control Systems Technology, 2016, 25(1):294-300.
[4] 郭建辉, 邹金校, 高恩壮. 汽车半主动悬架减震器阻尼匹配设计[J]. 汽车实用技术, 2017, (2):1-3.
Guo Jian-hui, Zou Jin-xiao, Gao En-zhuang. Damping matching design of automotive semi-active suspension[J]. Automobile Applied Technology, 2017, (2):1-3.
[5] Tang X, Du H, Sun S, et al. Takagi–sugeno fuzzy control for semi-active vehicle suspension with a magnetorheological damper and experimental validation[J]. IEEE/ASME Transactions on Mechatronics, 2017, 22(1):291-300.
[6] Hudyjawa S, Nazim M, Hazrat A. Design and development of a semi-active suspension system for a quarter car model using PI controller[J]. Journal of Automation, Mobile Robotics & Intelligent Systems, 2017, 4(11): 26-33.
[7] Ming L, Yibin L, Xuewen R, et al. Semi-active suspension control based on deep reinforcement learning[J]. IEEE Access, 2020, 8:9978-9986.
[8] 周创辉, 文桂林. 基于改进型天棚阻尼控制算法的馈能式半主动油气悬架系统[J]. 振动与冲击, 2018, 37(14):168-174.
ZHOU Chuang-hui, WEN Gui-lin. Hydraulic-electrical energy regenerative semi-active hydro-pneumatic suspension system based on a modified skyhook damping control algorithm[J]. Journal of Vibration and Shock, 2018, 37(14):168-174.
[9] Smith M. Synthesis of mechanical networks: the inerter[J]. IEEE Transactions on automatic control, 2002, 47(10): 1648-1662.
[10] Chen L, Liu, C, Liu W, et al. Network synthesis and parameter optimization for vehicle suspension with inerter[J]. Advances in Mechanical Engineering, 2016, 9(1): 1687814016684704.
[11] Shen Y, Chen L, Liu Y, et al. Modeling and optimization of vehicle suspension employing a nonlinear fluid inerter[J]. Shock and Vibration, 2016, 2016.
[12] Ning D, Sun S, Du H, et al. An electromagnetic variable inertance device for seat suspension vibration control[J]. Mechanical Systems and Signal Processing, 2019, 133: 106259.
[13] 刘昌宁, 陈龙, 张孝良, 等. 可控ISD悬架系统的建模与LQG最优控制[J]. 中国科技论文,2017,(04):403-407.
LIU Chang-ning, CHEN Long, ZHANG Xiao-liang, et al. Controllable ISD suspension system modeling and LQG optimal controller design[J]. China Sciencepaper, 2017, (04):403-407.
[14] 沈钰杰, 陈龙, 杨晓峰, 等. 应用惯容器提升车辆侧向稳定性的研究[J]. 汽车工程, 2018, (6):693-698.
SHEN Yu-jie, CHEN long, YANG Xiao-feng, et al. Research on the improvement of lateral stability for vehicle suspension employing inerter[J]. Automobile Engineering, 2018, (6):693-698.
[15] Smith M, Wang F. Performance benefits in passive vehicle suspensions employing inerters[J]. Vehicle system dynamics, 2004, 42(4): 235-257.
[16] Chen M, Smith M. Mechanical networks comprising one damper and one inerter[C]. 2007 European Control Conference (ECC). IEEE, 2007: 4917-4924.
[17] 陈龙, 杨晓峰, 汪若尘, 等. 改进的ISD 三元件车辆被动悬架性能的研究[J]. 汽车工程, 2014, 36(3): 340-345.
CHEN Long, YANG Xiao-feng, WANG Ruo-chen, et al. a study on the performances of vehicle passive suspension with modified inerter-spring-damper three-element structure[J]. Automotive Engineering, 2014, 36(3): 340-345.
[18] Zhang S Y, Jiang J Z, Neild S A. Passive vibration control: a structure-immittance approach[J]. Proceedings of the Royal Society of London, 2017, 473(2201): 1-21.
[19] Wang F, Chan H. Vehicle suspensions with a mechatronic network strut[J]. Vehicle System Dynamics, 2011, 49(5): 811-830.
[20] Karnopp D, Trikha A. Comparative study of optimization techniques for shock and vibration isolation[J]. Journal of Engineering for Industry, 1969, 91(4): 1128-1132.
[21] Karnopp D, Crosby M. The active damper a new concept for shock and vibration control[J]. The Shock and Vibration Bulletin, 1973, 143(4): 119-133.
[22] 张磊, 张进秋, 彭志召, 等. 车辆半主动悬架改进型天棚阻尼控制算法[J]. 汽车工程, 2015, (8):931-935.
Zhang Lei, Zhang Jin-qiu, Peng Zhi-zhao, et al. Improved sky-hook damping control algorithm for semi-active vehicle suspensions[J]. Automotive Engineering, 2015, (8):931-935.
[23] Hu Y , Chen M , Sun Y. Comfort-oriented vehicle suspension design with skyhook inerter configuration[J]. Journal of Sound and Vibration, 2017, 405:34-47.
[24] 李晓磊. 一种新型的智能优化算法—人工鱼群算法[D]. 杭州: 浙江大学, 2003.
LI Xiao-lei. A new intelligent optimization algorithm— artificial fish school algorithm[D]. Hang zhou: Zhejiang University, 2003.
[25] 鲍海兴, 曾志高, 朱艳辉, 等. 一种变视野和步长的人工鱼群算法[J]. 湖南工业大学学报, 2018, 32(003):81-85.
BAO Hai-xing, ZENG Zhi-gao, ZHU Yan-hui, et al. An artificial fish swarm algorithm based on variable visual field and step length[J]. Jourmal of Hunan University of Technology, 2018, 32(003):81-85.
[26] 杨柳青, 陈无畏, 高振刚, 等. 基于电磁阀减振器的1/4车辆半主动悬架非线性控制[J]. 农业机械学报, 2014, 45(04):1-7.
Nonlinear control of quarter vehicle model with semi-active suspension based on solenoid valve damper[J]. Transactions of the Chinese Society of Agricultural Machinery, 2014, 45(04):1-7.
[27] Ashkan K, Phillips B. Rate-independent linear damping in vehicle suspension systems[J]. Journal of Sound & Vibration, 2018, 431:405-421.
[28] 胡国良, 张佳伟, 钟芳, 等. 径向流磁流变阀控缸系统动力性能研究[J]. 农业机械学报, 2018, 49(6):418-42012726.
HU Guo-liang, ZHANG Jia-wei, ZHONG Fang, et al. Dynamic characteristics analysis of radial flow MR valve controlled cylinder system[J]. Transactions of the Chinese Society of Agricultural Machinery, 2018, 49(6):418-426.
[29] Liu C, Chen L, Zhang X, et al. Stability analysis of semi-active inerter-spring-damper suspensions based on time-delay[J]. Journal of Theoretical and Applied Mechanics, 2020, 58(3):599-610.

PDF(1884 KB)

674

Accesses

0

Citation

Detail

段落导航
相关文章

/