混合框架可更换梁的抗震性能及设计方法

门进杰1,2,王欢欢1,兰涛1,3,任如月1,史庆轩1,2

振动与冲击 ›› 2021, Vol. 40 ›› Issue (22) : 82-91.

PDF(2549 KB)
PDF(2549 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (22) : 82-91.
论文

混合框架可更换梁的抗震性能及设计方法

  • 门进杰1,2,王欢欢1,兰涛1,3,任如月1,史庆轩1,2
作者信息 +

Seismic performance and design method for hybrid frame replaceable beams

  • MEN Jinjie1,2,WANG Huanhuan1,LAN Tao1,3,REN Ruyue1,SHI Qingxuan1,2
Author information +
文章历史 +

摘要

针对端板-螺栓连接的RCS混合框架可更换梁,采用ABAQUS有限元软件对其在低周反复荷载作用下的受力性能进行分析。研究了长度系数对其破坏过程、破坏模式、滞回性能、抗剪承载力和塑性转动能力等性能的影响。在此基础上,分析了加劲肋间距对剪切型可更换梁抗震性能的影响。分析结果表明:长度系数可以作为可更换梁破坏模式的控制参数,当长度系数e≤1.45时可更换梁发生剪切破坏,当长度系数e>1.45时发生弯剪破坏;长度系数对试件抗剪承载力影响较大,而加劲肋间距对抗剪承载力的影响不明显。经综合分析,提出了剪切屈服型可更换梁长度系数的建议值,即0.9~1.2。分析结果还表明,该型式可更换钢梁具有良好的承载力和变形能力,其超强系数均大于AISC给出的超强系数建议值;此外,加劲肋加密可有效防止可更换梁腹板的屈曲,进而保证可更换梁的耗能能力与塑性转角,因此,不建议将剪切型可更换梁的加劲肋间距设置过大。最后,基于参数分析结果,从截面尺寸、承载力计算、构造措施和连接设计四个方面,给出了可更换梁的设计方法,并通过试验予以验证,为类似的结构构件设计提供参考。

Abstract

The mechanical behavior of replaceable beam with end-plate-bolt connections in hybrid frame structure under low cycle reversed loading was analyzed with the finite element software ABAQUS. The effects of length ratio on the failure process, failure mode, hysteretic performance, shear bearing capacity and plastic rotation capability of the replaceable beam were studied. Based on the shear yielding replaceable beam, the influence of the stiffener spacing on the seismic performance is analyzed. The results show that the length factor can be used as a control parameter for the failure mode of replaceable beams. When the length ratio e is less than 1.45, the shear failure of replaceable beams occurs. When the length ratio e is more than 1.45, the bending and shear failure of replaceable beams occurs. The length ratio has a great influence on the shear bearing capacity of specimens, but the stiffener spacing has little effect on the shear bearing capacity. After a comprehensive analysis, the length ratio of shear yielding replaceable beams is recommended to be designed from 0.9 to 1.2. The results also show that shear yielding replaceable beam has good bearing capacity and deformation capacity, and its overstrength factors are higher than the recommended value of overstrength factors given by AISC341-10 provisions. In addition, reducing the stiffener spacing can effectively prevent the buckling of web of replaceable beams, thus ensuring the energy dissipation capacity and plastic rotation of replaceable beams. Therefore, it is not recommended to set the stiffener spacing of shear yielding replaceable beams too large And based on the analysis results of parameters, the design method of replaceable beams is given from four aspects: section size, bearing capacity calculation, structural measures and connection design, and it is tested by experiment to provide a reference for similar structural design.

关键词

混合框架 / 可更换梁 / 长度系数 / 加劲肋间距 / 设计方法

Key words

the hybrid frame / the replaceable beam / the link length ratio / the stiffener spacing / the design method

引用本文

导出引用
门进杰1,2,王欢欢1,兰涛1,3,任如月1,史庆轩1,2. 混合框架可更换梁的抗震性能及设计方法[J]. 振动与冲击, 2021, 40(22): 82-91
MEN Jinjie1,2,WANG Huanhuan1,LAN Tao1,3,REN Ruyue1,SHI Qingxuan1,2. Seismic performance and design method for hybrid frame replaceable beams[J]. Journal of Vibration and Shock, 2021, 40(22): 82-91

参考文献

[1] 蒋欢军,刘其舟.可恢复功能剪力墙结构研究进展[J].振动与冲击,2015,34(07):51-58.
Jiang Huanjun, Liu Qizhou. State-of-the-art of the research advances on resilient shear walls[J]. Journal of Vibration and Shock, 2015, 34(07): 51-58.
[2] 周颖, 顾安琪. 自复位剪力墙结构四水准抗震设防下基于位移抗震设计方法[J]. 建筑结构学报, 2019, 40(3): 118-126.
ZHOU Ying, GU Anqi. Displacement-based seismic design of self-centering shear walls under four-level seismic fortifications. Journal of Building Structures, 2019, 40(3): 118-126.
[3] 吕西林, 陈聪. 带有可更换构件的结构体系研究进展[J]. 地震工程与工程振动, 2014, 034(001):27-36.
Lü Xilin, Chen Cong. Research progress in structural systems with replaceable members [J]. Earthquake Engineering and Engineering Dynamics, 2014, 34(1): 27-36.
[4] 陈云,吕西林,蒋欢军.带可更换连梁的超高层结构抗震性能研究[J].振动与冲击,2015,34(09):1-8.
Chen Yun, Lu Xilin, Jiang Huanjun. Seismic performance of a super tall structure with replaceable coupling beams [J]. Journal of Vibration and Shock, 2015, 34(09): 1-8.
[5] Mansour N, Christopoulos C, Tremblay R. Experimental validation of replaceable shear links for eccentrically braced steel frames [J]. Journal of Structural Engineering, 2011, 137(10): 1141-1152.
[6] Lopes A, Dusicka P, Berman J. Linked column framing system analyses toward experimental validation [C]//Structures Congress2012, ASCE, 2012: 1598-1609.
[7] 纪晓东,马琦峰,王彦栋,钱稼茹.钢连梁可更换消能梁段抗震性能试验研究[J].建筑结构学报,2014,35(06):1-11.
Ji Xiaodong, Ma Qifeng, Wang Yandong, et al. Cyclic tests of replaceable shear links in steel coupling beams [J]. Journal of Building Structures, 2014, 35(6): 1-11.
[8] 胡淑军,熊进刚,王湛.短剪切型消能梁段的力学性能及其影响因素研究[J].工程力学,2018,35(08):144-153.
HU Shujun, XIONG Jingang, WANG Zhan. Study of mechanical properties and its influence factors for short shear links [J]. Engineering Mechanics, 2018, 35(8): 144-153.
[9] ANSI/AISC 341-10. Seismic provisions for structural steel buildings[S]. Chicago: American Institute of Steel Construction, 2010.
[10] 建筑抗震设计规范:GB 50011-2010[S]. 北京:中国建筑工业出版社, 2010.
[11] 门进杰. 钢-混凝土混合框架可更换结构体系[P]. 中国专利. 201720807170.X, 2018-01-23.
[12] 顾强.钢结构滞回性能及抗震设计[M]. 北京:中国建筑工业出版社,2009:241-242.
[13] 董全利. 防屈曲钢板剪力墙结构性能与设计方法研究[D]. 北京: 清华大学, 2007.
[14] Max T. Stephens, Peter Dusicka, Gregory Lewis. End web stiffeners for connecting ductile replaceable links [J]. Journal of Constructional Steel Research, 2018, 150(8): 405-414.
[15] Okazaki T, Engelhardt M D. Cyclic loading behavior of EBF links constructed of ASTM A992 steel[J]. Journal of constructional steel Research, 2007, 63(6): 751-765.
[16] 建筑抗震试验方法规程:JGJ 101-1996. [S]. 北京:中国建筑工业出版社, 1997.
[17] Hjelmstad K D, Popov E P. Seismic behavior of active beam link in eccentrically braced frames [R]. Rep. No. UCB/EERC-83/15. Berkeley, CA: Earthquake Engineering Research Center, University of California at Berkeley, 1983.
[18] Malley J O, Popov E P. Shear links in eccentrically braced frames [J]. Journal of Structural Division, ASCE, 1984, 110 (9) :2275-2295.
[19] Kasai K, Popov E P. A study of seismically resistant eccentrically braced frames [R]. Rep. No. UCB/EERC-86/01. Berkeley, CA: Earthquake Engineering Research Center, University of California at Berkeley, 1986.
[20] Ricles J M, Popov E P. Experiments on eccentrically braced frames with composite floors [R]. Rep.No.UCB/EERC-87/06. Berkeley, CA: Earthquake Engineering Research Center, University of California at Berkeley, 1986.
[21] Engelhardt M D, Popov E P. Behavior of long links in eccentrically braced frames [R]. Rep. No. UCB/EERC-89/01. Berkeley, CA: Earthquake Engineering Research Center, University of California at Berkeley,1989.
[22] McDaniel C C, Uang C M, Seible F. Cyclic testing of built-up steel shear links for the new bay bridge [J]. Journal of Structural Engineering, 2003, 129(6): 801-809.
[23] Okazaki T, Engelhardt M D, Drolias A, et al. Experimental investigation of link-to-column connections in eccentrically braced frames [J]. Journal of Constructional Steel Research, 2009, 65(7): 1401-1412.
[24] Dusicka P, Itani A M, Buckle I G. Cyclic behavior of shear links of various grades of plate steel [J]. Journal of Structural Engineering, 2010, 136(4): 370-378.
[25] Ramadan T, Ghobarah A. Behavior of bolted link: column joints in eccentrically braced frames[J]. Canadian Journal of Civil Engineering 1995,22(4):745-754.
[26] 高层民用建筑钢结构技术规程:JGJ 99-2015[S].北京: 中国建筑工业出版社,2015.

PDF(2549 KB)

354

Accesses

0

Citation

Detail

段落导航
相关文章

/