空气舵作为常用的飞行器执行机构,存在间隙与摩擦等非线性特性,其非线性建模是一个反复迭代的过程,需要选择合适的模型反映其真实的动力学特性。为此,本文采用库仑摩擦模型和Stribeck摩擦模型建立了含间隙和摩擦的舵系统非线性动力学模型,并分别采用最小二乘非线性拟合法和遗传算法使用试验数据对模型中的未知参数进行识别。研究表明,相较于Stribeck摩擦模型,库仑摩擦模型能较为准确地反映系统中的摩擦力矩,两种参数识别方法均能有效完成未知参数的识别。
Abstract
As a kind of commonly used aerospace vehicle effector, air rudder has nonlinear characteristics such as clearance and friction. Its nonlinear modeling is an iterative process and it is necessary to select a suitable model to reflect its true dynamic characteristics. To this end, this paper uses the Coulomb friction model and the Stribeck friction model to establish the nonlinear dynamics model of the rudder system with clearance and friction,and uses the least square nonlinearfitting method and the genetic algorithm to identify the unknown parameters in the model using experimental data. The results show that,compared with the Stribeck friction model,the Coulomb friction model can more accurately reflect the friction torque in the actual system,and both parameter identification methods can effectively complete the identification of unknown parameters.
关键词
空气舵系统 /
库仑摩擦 /
Stribeck摩擦 /
参数识别
{{custom_keyword}} /
Key words
Air rudder system /
Coulomb friction /
Stribeck friction;Parameter identification
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 刘 博,祝学军,南宫自军,等. 电动空气舵执行机构建模与参数辨识[J].宇航学报,2017,38(11): 1147-1152.
LIU Bo, ZHU Xue-jun, NANGONG Zi-jun,et al. Modeling and parameter identification of an aircraft rudder system with an electromechanical actuator [J]. Journal of Astronautics,2017,38(11):1147-1152.
[2] 王成华,李国宏,李延松,等. 含间隙和干摩擦舵结构系统的非线性动力学特征[J].振动与冲击,2013,32(19): 22-27.
WANG Cheng-hua, LI Guo-hong, LI Yan-song,et al. Nonlinear dynamic characteristics for a rudder structure system with dry friction and clearance [J]. Journal of Vibration and Shock,2013,32(19): 22-27.
[3] 宿月文,朱爱斌,陈渭,等. 间隙约束副摩擦接触对多体系统动态特性的影响[J]. 润滑与密封, 2008, 33(8): 16-19.
SU Yue-wen, ZHU Ai-bin, CHEN Wei,et al. Effect of friction and contact in clearance joint on dynamics of multibody system [J].Lubrication engineering, 2008, 33(8): 16-19.
[4] 李忠洪. 考虑铰链间隙的空气舵传动机构动力学建模及分析[D]. 哈尔滨:哈尔滨工业大学硕士学位论文, 2015.
LI Zhong-hong.Dynamic modeling and analysis of transmission mechanism with joint clearances for air rudder[D].Haerbin:Harbin Institude of Technology,2015.
[5] 刘丽兰,刘宏昭,吴子英,等.机械系统中摩擦模型的研究进展[J].力学进展,2008(02): 201-213.
LIU Li-lan, LIU Hong-zhao, WU Zi-ying,et al.An overview of friction models in mechanical system[J].Advances in Mechanics
[6] 赵国峰,樊卫华,陈庆伟,等.齿隙非线性研究进展[J].兵工学报,2006(06):1072-1080.
ZHAO Guo-feng, FAN Wei-hua, CHEN Qing-wei,et al.A survey on backlash nonlinearity[J].Acta Armamentarii, 2006(06):1072-1080.
[7] 张鹏,冉景洪. 舵面系统间隙非线性气动弹性研究[J].航空兵器,2010(05): 3-6+8.
ZHANG Peng, RAN Jing-hong.Research on aeroelasticity with freeplay nonliearity of rudder system[J].Aero Weaponry, 2010(05): 3-6+8.
[8] 李金玉. 考虑混合间隙的机构动力学研究[D]. 哈尔滨工业大学, 2017.
LI Jin-yu.Research on dynemic characteristics of mechanism with mixed joint clearances[D].Haerbin:Harbin Institude of Technology,2017.
[9] 李岳锋, 胡海岩. 非线性系统参数识别的能量法[J].振动工程学报, 1991,4(3):34-40.
LI Yue-feng, HU Hai-yan.Parametric identification of nonliear systems based on energy analysis[J].Journal of Vibration Engineering, 1991,4(3):34-40.
[10] 窦苏广, 叶敏. 基于谐波平衡的参激系统非线性参数识别频域法[J]. 振动与冲击, 2009, 28(12):123-127.
DOU Su-guang, YE Min.Nonliear identification in frequency domain for parametric excitation system based on harmonic balance principle[J].Journal of Vibration and Shock, 2009, 28(12):123-127.
[11] 李伟, 王轲, 朱德懋, 等. 基于遗传算法的非线性迟滞系统参数识别[J]. 振动与冲击, 2000, 19(1): 8-11.
LI Wei,WANG Ke,ZHU De-mao,et al.Parameter identification of nonlinear hysteretic systems based on genetic algorithm[J]. Journal of Vibration and Shock, 2000, 19(1): 8-11.
[12] 张根辈,臧朝平. 基于振动测试的非线性参数识别方法[J]. 振动与冲击, 2013, 32(1):83-88.
ZHANG Gen-bei,ZANG Chao-ping.A novel method for nonlinear parametric identification based on vibration tests[J]. Journal of Vibration and Shock, 2013, 32(1):83-88.
[13] Armstrong-Helouvry B, Dupont P, De W C. A survey of model s, analysis tools and compensation methods for the control of machines with friction[J]. Automatica. 1994, 30(7); 1083-1138.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}