遥测振动信号单通道盲源分离自适应滤波幅度校正方法

肖瑛1,马艺伟1,刘学2

振动与冲击 ›› 2021, Vol. 40 ›› Issue (23) : 127-133.

PDF(1022 KB)
PDF(1022 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (23) : 127-133.
论文

遥测振动信号单通道盲源分离自适应滤波幅度校正方法

  • 肖瑛1,马艺伟1,刘学2
作者信息 +

Single channel blind source separation adaptive filtering amplitude correction method for telemetry vibration signals

  • XIAO Ying1, MA Yiwei 1, LIU Xue2
Author information +
文章历史 +

摘要

针对基于经验模态分解(empirical mode decomposition, EMD)和独立分量分析(Independent Component Analysis, ICA)的单通道盲源分离幅度不确定性问题,根据最小失真准则提出了一种自适应滤波幅度校正方法。利用EMD将单通道信号分解为一系列本征模态函数(Intrinsic Mode Function, IMF),依据对数坐标下的边际谱分布确定单通道信号包含的独立分量数目。选择对应的IMF组合作为观测信号分量,利用ICA完成分离。根据分离信号数目确定横向滤波器阶数,并将分离信号作为滤波器的输入信号分量。利用滤波器输出和原始单通道信号设计目标函数,自适应调整滤波器系数使算法完成收敛,算法收敛后的滤波器权系数即为对应分离信号的幅度校正系数。仿真及飞行器试验遥测振动信号的处理结果证明在EMD-ICA基础上,该方法可准确得到信号各分量的幅度信息,为遥测振动信号进行时域统计及时频分析中能量检测提供了有效技术途径。

Abstract

To solve the amplitude uncertainty problem of single channel blind source separation based on empirical mode decomposition (EMD) and independent component analysis (ICA), an adaptive filtering amplitude correction method was proposed. The single channel signal is decomposed into a series of intrinsic mode function (IMF) by EMD, and the number of independent components contained in the single channel signal is determined according to the marginal spectrum distribution in logarithmic coordinate. The corresponding IMF is selected as the observed signal component and blind source separation can be implemented by ICA. The order of the transversal filter is determined according to the number of separated signals, and the separated signal is used as the input signal component of the filter. The objective function of adaptive filtering is designed with the filter output and the original single channel signal, and the filter weights are adaptively adjusted to obtain convergence. The filter weights after the algorithm convergence are the amplitude correction coefficients of the corresponding separated signal components. The results of simulation and flight vehicle test telemetry vibration signal process show that the proposed method can obtain the accurate energy information of each component of the signal, which provides an effective technical way for energy detection in time-domain statistics and time-frequency analysis of telemetry vibration signals.

关键词

飞行器试验 / 振动信号 / 经验模态分解 / 盲源分离 / 自适应滤波

Key words

flight vehicle test / vibration signal / empirical mode decomposition (EMD) / blind source separation / adaptive filtering

引用本文

导出引用
肖瑛1,马艺伟1,刘学2. 遥测振动信号单通道盲源分离自适应滤波幅度校正方法[J]. 振动与冲击, 2021, 40(23): 127-133
XIAO Ying1, MA Yiwei 1, LIU Xue2. Single channel blind source separation adaptive filtering amplitude correction method for telemetry vibration signals[J]. Journal of Vibration and Shock, 2021, 40(23): 127-133

参考文献

[1] 郝如江, 安雪君, 史云林. 基于EMD和CICA的单通道盲源分离方法用于齿轮箱混合故障诊断研究[J]. 振动与冲击, 2019, 38(8): 225-231+262.
HAO Ru-jiang, AN Xue-jun, SHI Yun-lin. Single-channel blind source separation based on EMD and CICA and its application to gearbox multi-fault diagnosis [J]. Journal of Vibration and Shock, 2019, 38(8): 225-231+262.
[2] XU Peng-fei, JIA Yin-jie, WANG Zhi-jian, et al. Underdetermined blind source separation for sparse signals based on the law of large numbers and minimum intersection angle rule [J]. Circuits, Systems, and Signal Processing, 2020, 39: 2442-2458.
[3] 郑源, 潘天航, 王辉斌等. 改进EMD-ICA去噪在水轮机组隐蔽碰磨诊断中的应用研究[J]. 振动与冲击, 2017, 36(6): 235-240.
ZHENG Yuan, PAN Tian-hang, WANG Hui-bin et al. Improved EMD-ICA method used in the hidden rubbing fault diagnosis of turbine units [J]. Journal of Vibration and Shock, 2017, 36(6): 235-240.
[4] 王康, 程浩, 张坤. 基于变分模态分解的单通道信号盲源分离方法[J]. 科技通报, 2019, 35(2): 138-143+149.
WANG Kang, CHENG Hao, ZHANG Kun. Blind source separation of single-channel signal based on variation mode decomposition [J]. Bulletin of Science and Technology, 2019, 35(2): 138-143+149.
[5] Rashi Dutt, Anuradha Baloria, Ram Chandra Prasad V., et al. Discrete wavelet transform based unsupervised underdetermined blind source separation methodology for radar pulse deinterleaving using antenna scan pattern [J]. IET Radar, Sonar & Navigation, 2019, 13(8):1350-1358.
[6] GUO Shi-yu, YU Jia-yin, SHI Meng-na, et al. Blind source separation algorithm for chaotic masking multipath signals based on spectral peak search counter permutation [J]. IEEE Access, 2020, 8: 86617-86629.
[7] 李龙. 频域语音盲分离的模糊性消除方法研究[D]. 大连: 大连理工大学, 2013.
LI Long. Elimination of ambiguity for blind source separation of mixed speeches in frequency-domain [D]. Dalian: Dalian University of Technology, 2013.
[8] 周小龙, 刘薇娜, 姜振海等. 改进的HHT方法及其在旋转机械故障诊断中的应用[J]. 振动与冲击, 2020, 39(7): 189-195.
ZHOU Xiao-long, LIU Wei-na, JIANG Zhen-hai, et al. Improved HHT method and its applications in rotating machinery fault diagnosis [J]. Journal of Vibration and Shock, 2020, 39(7): 189-195.
[9] 余腾, 胡伍生, 吴杰等. 基于小波阈值去噪与EMD分解方法提取润扬大桥振动信息[J]. 振动与冲击, 2019, 38(12): 264-270.
YU Teng, HU Wu-sheng, WU Jie, et al. Extraction of Runyang bridge vibration information based on a fusion method of wavelet threshold denoising and EMD decomposition [J]. Journal of Vibration and Shock, 2019, 38(12): 264-270.
[10] 赵知劲, 黄艳波. 基于经验模态分解的单通道盲源分离算法[J]. 计算机应用研究, 2017, 34(10): 3010-3012.
ZHAO Zhi-jin, HUANG Yan-bo. Single-channel blind source separation algorithm based on empirical mode decomposition [J]. Application Research of Computers, 2017, 34(10): 3010-3012.
[11] 付卫红, 周新彪, 农斌. 单通道盲源分离的研究现状与展望[J]. 北京邮电大学学报, 2017, 40(5): 1-11.
FU Wei-hong, ZHOU Xin-biao, NONG Bin. The research of SCBSS technology: survey and prosepect [J]. Journal of Beijing University of Posts and Telecommunications, 2017, 40(5): 1-11.
[12] 李宏坤, 贺长波, 于刚等. 利用稀疏盲源分离方法的叶片裂纹特征提取[J]. 振动工程学报, 2017, 30(3): 510-518.
LI Hong-kun, HE Chang-bo, YU Gang, et al. Blade crack feature extraction by using sparse blind source separation algorithm [J]. Journal of Vibration Engineering, 2017, 30(3): 510-518.
[13] 唐贵基, 周翀, 庞彬等. 基于参数优化时变滤波经验模态分解和希尔伯特变换的转子故障诊断[J]. 振动与冲击, 2019, 38(10): 162-168.
TANG Gui-ji, ZHOU Chong, PANG Bin, et al. Parameter optimized time-varying filter based empirical mode decomposition method for the fault diagnosis of rotors [J]. Journal of Vibration and Shock, 2019, 38(10): 162-168.
[14] WU Z H, HUANG N E. A study of the characteristics of white noise using the empirical mode decomposition method [J]. Proceedings of the Royal Society A, 2004, 460A: 1597-1611.
[15] 李东瑾, 杨瑞娟, 李晓柏等. 基于栈式稀疏降噪自编码网络的辐射源调制识别[J]. 电子学报, 2020, 48(6): 1198-1204.
LI Dong-jin, YANG Rui-juan, LI Xiao-bai, et al. Emitter signal modulation recognition based on stacked sparse denoising auto-encoders [J]. ACTA Electronica Sinica, 2020, 48(6): 1198-1204.

PDF(1022 KB)

Accesses

Citation

Detail

段落导航
相关文章

/