应用二级轻气炮发射球形铝合金弹丸撞击充气球形压力容器,研究球形压力容器后壁的损伤破坏模式及气体压力和弹丸撞击速度对后壁损伤破坏效应的影响。根据试验结果将后壁的损伤破坏模式分为三类,其中撕裂模式是超高速撞击充气压力容器所特有的损伤破坏模式。以后壁的损伤破坏程度和损伤破坏范围作为特征参数,通过考察气体压力和弹丸速度与以上特征参数的关系来获得二者对后壁的损伤破坏影响。结果表明,在后壁未撕裂的前提下内充气体压力的增加可使后壁的损伤破坏程度和范围均降低,即增加内充气体压力可减缓球形压力容器后壁的损伤破坏;在其余参数不变时,随着弹丸速度的增加,球形压力容器后壁的损伤破坏程度和范围均呈现先加剧、后减弱、又加剧的趋势。
Abstract
A second-stage light gas gun is used to launch a spherical aluminum alloy projectile to impact gas-filled spherical pressure vessel. The back wall damage modes are obtained, as well as the gas pressure and the projectile impact velocity on the damage effect of the back wall are studied. According to the test results, the damage modes of the back wall could be divided into three types, and the tearing mode is the unique damage mode of hypervelocity impact on gas-filled pressure vessel. The damage degree and damage scope of the back wall are taken as the characteristic parameters, and the influence of the gas pressure and the projectile velocity on the damage of back wall are obtained by investigating the relationship between the above characteristic parameters and the gas pressure and the projectile velocity. The results show that the damage degree and scope decrease with the increase of the gas pressure. That means, the back wall damage could be mitigated by increasing gas pressure. With the increase of projectile velocity, the damage degree and scope of the back wall firstly increase, then decrease, and then increase.
关键词
超高速撞击 /
压力容器 /
后壁 /
损伤破坏
{{custom_keyword}} /
Key words
Hypervelocity impact /
Pressure vessel /
Back wall /
Damage and failure
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 朱毅麟. 空间碎片环境近况[J]. 中国空间技术, 1996, 6: 19-28
ZHU Yi-lin. Current Space Debris Environment[J]. Chinese Space Science and Technology, 1996, 6: 19-28
[2]刘源, 庞宝君. 基于贝叶斯正则化BP 神经网络的铝平板超高速撞击损伤模式识别[J]. 振动与冲击, 2016, 35(12): 22-27.
Liu Yuan, Pang Baojun. Hypervelocity Impact Damage Pattern Recognition on Aluminum Plates Based on Bayesian Regularization BP Neural Network [J]. Journal of Vibration and Shock, 2015, 34(13): 12-17.
[3] N. L. Johnson. Environmentally-Induced Debris Sources[J]. Advances in Space Research, 2004, 34(5): 993-999.
[4] 都亨, 张文祥, 庞宝君等. 空间碎片[M]. 北京: 中国宇航出版社, 2007: 22-31
DU Heng, ZHANG Wen-xiang, PANG Bao-jun, et al. Space Debris[M]. Beijing: China Aerospace Press, 2007: 22-31
[5] R. Robert. Debris Environment Interactions with Low Earth Orbit Constellations[C]. Proceedings of the Secondary debris Europe Conference on Space Debris, ESOC, Darmstadt, Germany, 1997
[6] 皇甫素伟, 邱楠. 空间碎片减缓的国际机制概述[J]. 国际太空, 2017, (462): 62-65
HUANGFU Su-wei, QIU Nan. An Overview of the International Mechanism for Space Debris Mitigation[J]. Space International, 2017, (462): 62-65
[7] J. P. Whitney. Hypervelocity Impact Tests of Shielded and Unshielded Pressure Vessels[R]. NASA Report JSC 32294, 1993
[8] 盖芳芳, 才源, 郝俊才等. 超高速撞击压力容器后壁损伤实验及建模研究[J]. 振动与冲击, 2015, 34(13): 12-17.
Gai Fangfang, Cai Yuan, Hao Juncai, et a1. Tests and Modeling for Damage of Pressure Vessels' Rear Wall Caused by Hypervelocity Impact[J]. Journal of Vibration and Shock, 2015, 34(13): 12-17.
[9] 盖芳芳, 闫龙海, 高国付等. 超高速撞击充气压力容器前壁穿孔试验及预报[J]. 振动与冲击, 2019, 38(2): 41-45.
Gai Fangfang, Yan Longhai, Gao Guofu, et a1. Experiments on the Perforation of Pressure Vessels’ Front Walls Caused by A Hypervelocity Impact[J]. Journal of Vibration and Shock, 2019, 38(2): 41-45.
[10] CHRISTIANSEN E L,KERR J H,WHITNEY J P. Debris Cloud Ablation in Gas-Filled Pressure Vessels[J]. International Journal of Impact Engineering, 1997, 20: 173-184
[11] TELITCHEV I Y,SCHÄFER F K,SCHNEIDER E E,et al. Analysis of the Fracture of Gas-Filled Pressure Vessels under Hypervelocity Impact[J]. International Journal of Impact Engineering, 1999, 23: 905-919
[12] M. Lambert, E. Schneider. Hypervelocity Impacts on Gas Filled Pressure Vessels[J]. International Journal of Impact Engineering, 1997, 20: 491-498.
[13] 才源, 庞宝君, 迟润强等. 高压气体对靶板穿孔及其碎片云运动和致损效应影响研究[J]. 振动与冲击, 2019, 38(19): 31-37
CAI Yuan, PANG Bao-jun, CHI Run-qiang, et al. Influence of Gas Pressure on Front Wall perforation and Debris Cloud Movement and Damage Effect[J]. Journal of Vibration and Shock, 2019, 38(19): 31-37
[14] TELITCHEV I Y,SCHÄFER F K,SCHNEIDER E E,et al. Analysis of the Fracture of Gas-Filled Pressure Vessels under Hypervelocity Impact[J].International Journal of Impact Engineering, 1999, 23: 905-919
[15] R. Q. Chi, B. J. Pang, G. S. Guan, et al. Analysis of debris clouds produced by impact of aluminum spheres with aluminum sheets[J]. Impact Engineering, 2008, 35: 1465-1472
[16] F. Schäfer. Hypervelocity Impact Testing Impact on Pressure Vessels Final Report[R], EMI Report I-27/01, 2001.
[17]全国压力容器标准化技术委员会秘书处.铝制焊接容器:JB/T 4734—2002[S].北京:中华人民共和国国家经济贸易委员会.
[18] 管公顺, 庞宝君, 哈跃等. 铝合金Whipple防护结构高速撞击实验研究[J]. 爆炸与冲击, 2005, 25(5): 461-466
GUAN Gong-shun, PANG Bao-jun, HA Yue, et al. Experimental Investigation of High-velocity Impact on Aluminum Alloy Whipple Shield [J]. Explosion and Shock Waves, 2005, 25(5): 461-466.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}